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Critical Behavior
in Multifurcation Phenomena and Invariant Circles

in Area-Preserﬁing Maps

Qang—Yoon Kim

Abstract: Iﬁ thé”phase spase of generic area-preserving maps
periodlc,quasi-periodie and stochastic orbifs coexist and
interact . We study two phenomena reléted to periodic and
quasi-periodic orbits among the three kinds of orbits.

The first phehomenon is the infinitely nested
structure of islands which play the role of"trap'. We
show that at the accumulation point islands of all classes
eﬁist and they_have a self-similar stiructure asymptotically
for i/n-bifurcation, with n=3 to 6. It is alsao bhserved that
the pattern of periodic orbits repeats itseff asymﬁtotically
from one hifurcation.to the next one for even n and tervery
other one for odd n. Indeed, even more limiting self-gimilar
behavior existe near the accumulation point. When we rescale
not only dynamical variables but also the parameter-with appro-
priate rescaling facctors , the pattern of periodic orbits

also exhibits the limiting self-similar behavior.

We also stiudy the asymptotically self-similar!
structiure by a simple approximate renormalization method.

" By the method, we obtained the accumulation point, the

bhifurcation ratio, the scaling factors and the universal



residue values. These Qalues ajree well with the vaiues

obtained by following multifurcation-sequences. Furthermore,
we obtained an approximate universal map of i/n-bifurcation,
with n=3 to 6. In this way , weAshow approximately that the

limiting self-similar hehavior is universal.

The second phenomenon we studied is the break-up:
of invariant circles which plaj the role of 'dan* under
a fough pettnrﬁtion . We show numerically that a noble
invariant circleﬁgersista below a critical“paranéter value in
a Cz-nap. Therefo;e, the invarlant circle plays the role of
complete barrier to the transport of gtochaﬁtic ﬁrbits below
the critical parameter value. Furthermore, we_aiso observed
that the critical behavior of the invariant circle is the same
as that in analjtic map; within numerical acéuracy. Thérefore,

they seem to be in the same universality class .
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Introduction

The phase spacé of generic 1-parameter famiiies of
area-pfeserving maps is divided into regular components
land stochastic @ﬁmponents,'eacﬁ measure of which depends on
the parameteffh;; this way, the phase space has a very
intricate structure : periodic , quasi-periodic and stochastic
orbits coexiast and interact. Therefore, in order to study the
long~time hehavior of orbits, one should study the whole phase
space, for a given parametér valué. on tﬂé dzhe; hand, ih
dissipative systems , only studying attractors and their basins
in the;phase Qpace suffices; for a given parameter wvalue. In
this thesia, I consider conservative systens.“

To see the rolea of orhita in the phase space,aB an
example, let us bonsidér a periodic¢ areanpresefving radial
twiat map '1'E with zero net flux , e.qg. a simplified Fermi
accleration map ( Liebermann and Lichtenherqg,1972), the

separatrix map and the standard map (Chirikov,1979) ;

-
I§

nes In + E-f(Bn)

T, (1)

®ne1 = O * v (I ). "
Here o is an angle variable, f a periodic function in o
with zero average over 0, v'(!)# 0, £ a parametér which
denotes the strength of pérturbtion . The meaning of I depends
on the system. I sketch a typical phase flow of the separatri;
map in the figure 1 {( to Bee in some details, refer to 8§ 1.4 ).
This separa{rix nap describesvthe motion neér a broken

separatrix. It is also worth while to note that generically a

séparatrix in an integrable system is broken by arbitrarily
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g8mall perturbations ( Robinson, 1870, Arnoid,197as). In the
separatrix map, the dynamical variable I denotes the degree
of relative deviation from the unperturbed Beparatrix ( I=0 ).
That is, as the magnitude of 1 increases, the degree of rela-
tive deviation increases. Hére, the'region in ﬁhich I>0 is the
rotational Qne“and the region in which I<0 the vibrational one.
As shown in the figure 1, near the broken separatrix, a
stochastic layer with two boundary invariant circles is formed.
Inside the stochastic layer, no rotational ;nvariant circles
exist. On the other hand, outside the stochastic layer, invar-
iant circles and islands are interleaved, and thin stochastic
layers are formed near unstable orbits.

For the sake .of conv€nience, let us restrict our atten-
" tion to® the stochgstic layer near the broken separatrix,
since it is sufficient‘to do so becausé our -present aim is to
see the roles of orbits. The stochastic layer consists of two
'parts. The central part has no islands, and in this part many
unstable periodic orbita denoted by x in the figure 1 are
embedded in this:part. Oon thé other hand, the peripheral part
near the boundary circles has large islands. Inside: this
stbchastic layef , apparently area-filling stochastic orbits
denoted by wavy arrows wander about. Iﬁ this way, the stqcha-
stic layer bounded by two boundary dircleﬁ consists of islands,
unatable periodic orbits and stochastic orbits.

Now, let us see the roles of orbits which coexist and
intergct in the stochastic layer., Near the central part, many

unstable orbits are embedded and they play the role of



tfscatter’. Therefore, a stochastic orbit has an exponentialiy
decaying short-term correlation in this region ¢ Chirikov,1979,
Rechester and White, 1980 ). Sometime, the stochastic orbit
approaches the region near the boundary ciréle iﬁ which large
islands exist. In this region, the stochastic orbit has a long-
time correlation.3sihce.islands play the role of ' trap ?
{ Channon and Lebowitz,1980, Karney,1983, Chfikov and
Shepelyansky,1984 ). Also, one should notice that the stochastic
orbit can not peﬁetrate the boundary circles, Therefore, thg
. invariant circle play the role of 'dam‘,

In the manner described above, periodi¢,quasi-periodic
and stochastic orbits coexist and interact. In this thesis
we study two phenémena related to periodic and'quasi— periodic
orhits among‘the three xinds of orbits.

The first phenomenon is the infinitely neste& structure
of islands thch play the role of * trap '’ . To study'fhe
phase flow near an island in a generalized area—preservipg
map. T, 1t is Qenerally sufficient to study the phase flow in
a quadratic map obtained by keeping the terms to the second
order in Taylor-expansion of T anut the stable periodic'pbint
{ Henon, 1969, Helleman, 1983, Karney,1982). In this case, the
gquadratic map exhibits nearly the same phase flow near an
.island as that in the original mép, ﬁnd since the quadfatic
map is the ﬁontrivial simplest map we can save computing time
in numeridal study and reduce numerical error. Many authors
( Henon, 1869, DeVYogelaere, 1958, Helleman, 1980, Karney,1983 )

studied wvarious quadratic maps. However, general quadratic



maps can be re}éted one another by approﬁriate coordinate
changes ( Henon, 1969, Lee,1983 )}, Therefore, we can choose a
quadratic mah without loss of generality. In this thesias, we
chpose the DeVogelaere quadratic map, since the ﬁap is repre-
sented in terms of symmetry coordinate ( see (1.1.3.4) }.

Thus, in § 2.3 and § 2.4, we study the infinitely nested
. 5 : g

atructure of islands which maic_é“::stochasti";g_ﬂ__burbit_ have a
long-time correlationlin the DeVogelae;é qpadratic map.

The second Phenomenon we gtudied is fhe break-up of
invariant circles which play tﬁe rple of *dam’ under rough
perturbations . The persistence of an invarigﬁt'circle depends
on the quality and strength of perturbtion and the robustness
of the invariant circle. In fact, Moser(1873) shows that a
sufficiently robust invariant circle persists under a suffi-
ciently small and smooth perturbtion. The sufficient smooth-
ness is now Cr( r>3 ). In§ 2.5, we study the persistence of
an inyariant circle whose rotation number is Golden-Mean
under a Cz-perturhtion. The Golden-Mean invariant circle is
expgqted to be the most recbust in some sense ( Greene,1978 ).
But, since the smoothness of perturbation is CQ, the persist-
ence of the invariant circle is not guaranteed by ﬂoser’s
twist theorem.  In this éase, following Greene’s residue
criterion (1979) and Mather’s criterion( Mackay et al, 1984),
we study the perSistence oflthe_Golden—Hean'circle'in a gen-
eralized standard map of claBs—Cz} Generalized standard maps
can be obtained in the following way. ﬁe firét locate the

fixed points of a generalized radial twist map TE {1) in which



v is a nonliner function of I. Secondly, keep the linear term
in I in Taylor-expansion of TE in I about a fixed point ( f,S

Then, we can obhtain a generalizéd standard map T(H):

sl
J J_ + K(e, IN-f(®) '
n+} n | (2)

T(K):[ .
e 8 + J

i

n+1 n n+i

This generalized standard map exﬁihits nearlly the same
rPhase flow as that in the original map near an fixed point
in the I-direction. Therefore, studyiﬁg”the generalized
standard mép T(K) alone, we can see the phase flow near
fixed points. in a generalized radial twist map TE. In this -
sense, T(K) may be called the generalized standard map. |
Therefore, instead éf studying the generalized radial twist
map TE, we stuﬁy in § 2.5 the persistence of thelGolden-Hean
invariant circle in a generalized standard map {(2) with some
(o) of,class'—-c2

This thesis consists of three chapters . CHAPTER 1 is
devoted tb an introduction to area-preserving maps and a
review of the background which is relevant to this thesis .
In § 1.1, we deacribe how an area-presgrvlng map can he

obtained from a conservative flow, and introduce area-

).

preserving maps and reversible maps. In the remaining =sections

( i.e., from § 1.2 to § 1.4 }, We devote a section to each of
periodic, quasi-periodic and stochastic orbits which coexist
and interact in area-preserving maps. CHAPTER 2 containe the:
major part of this thesis . 8 2.1 is the iﬁtroduction to two

Phenomena we studied. In § 2.2, we describe generic bifurca-



tions in reversihle area- preserving maps in some details.

This is because the relation bhetween symmetric periodic orhits
.and.symmetry half;lines is very important in gnderstanding the
critical behavior in multifurcation phenomena and invariant
circles. In §!§.3 and § 2.4,we show that near fhe aé#umulation
point, the infinitely nested islands have a universally self-
similar structure, empirically and hj some‘apprOQimate renor -
malization method in.each sectioh respectively. In § 2.5, we
sho; that the Golden-Mean invariant circle in a C2Lmap persists
below a ¢critical parameter value-and it has the same critical

behavior as that in analytic maps. Finally, in the CHAPTER 3,

we summarize and discuss our work .

xiil



CEAPTER 1: Introduction to area-preserving maps

A dynamical system is simply a time evolution defined
by an ordinary differential equation :

dxrsdt = P{x), where x and f are n-vectors.
vSuch dynamical systems can be used to model many ayafems in
physics, chemistry, hiology and other areas { Lichtenberg
and Liebermanngllsaz).

In thig thesis, I considef only coéervativg ayatéms in

which volumes are preserved under evolution:
v-f =0 .
~N e

Then orbits in conservative systems cannot be asymptotically
stable, and thus the limit set under evolution , for a con-
servative system, is the whole space. On the other hand, in
dissipativg {or volume-contracting) systems there is attra-
tion, and thus the long-time behaviors of all orbits in its
basin are reduced to those of the orbits on the attractpr;
Long-time behavior in conservative systems is of par-
ticular importance for'questions of'stability aqd confine-
ment, on the one hand , and instability and trangsport on the
other hand. Historically; the interest in long ~-time behavior -
in conservative systems began with the question of. the stabil-
ity of the solar system.l The problem of stability for long
times 18 now one of considerable practical significance in the
design of. intersecting storage rings and magnetic fusion

device, where charged particles are required to remain trapped



for mahy millions of revolutions._lOn the other handr
instability and transport is also of considerable importance
to nan& ;pp[ications, including‘calculations of particle loss
from accelerators and plasmasland wave heating rates in
 p1asmaa, and the fundamenta! problemsa in statistical_physics.
Physically, the most important class of conservati#e
systems is the class of Hamiltonian systems, IThe gimplest
nontrivial Hamiltonian systemsn are all autonomous Hamiltonian
systems with 2 degrees of freedom, and équivalentlf all
pefiddically time-dependent Hamiltonian systema\with 1 degree
of freedom which are called syastems with 1% degrees of free-
dom, 8ince all autonomous Hamiltonian systems with 1 degree
of freedom are integrable. These simplest nontrivial Hamil -
tonian systems €xhibit many of the features of Hamiltonian
systems with higher qurees of freedom, though tﬁere are
some phenomgna only possible in systems with higher degrgea
of freedom, such as Arnold diffusion and the Krein crunch.
Sb, I wiil devote my attention to Hamiltonian systemg with
1% or 2 degrees of freedom.
| The study of continuous time systems can often be redu-
ced to that of discrete time systems (Qr_maps} by consider-
ing the return map con a surface of section. In the case . of
‘a Hamiltonian system with 1% or 2 degrees of freedom, the
return map is a two dimensional area-preserving map. In § 1.1,
how a Hamiltonian flow can be reduced to an area-preserving
map on a\éurfage of section is described, and-area-preaervlng

- maps and reversible maps are introduced. There are three



important types of orbits in area-preserving maps., They are
periodic orbits, quasiperiodic orbits which densely fill an
invariant circle or a Cantor set, énd.gtochastic orbits which
are ver& sensitive to initial conditions and appear to he
area-filling. In the remaning sections, we'devote a section

. to each of the three kinds of orbits.
8§ 1.1 Maps
In § 1.1.1, I review how a Hamiltonian system with 1% or
2 degrees of freedom can be reduced to a two dimensional
area-preserving map. In the next two subsections, I introduce
two important class of maps, area-preserving twist maps and
- reversible maps.

§ 1.1.1 Area-preserving maps

‘Let us consider a two degree of freedom system with’

Hamiltonian H(ql, Pyv o p2). The Hamilton’s equations
are:
q = oM b = oH
- S * Ly Rl
1 ap1 1 Bq1
El _ aH ]"3 _ aH {1.1.1.1)
= eme—— » - - o *
2 8, 2 94,

Since this system is autonomous, H is a constant of motion:

H(qlrplquoPQ) = E = const. i {1.1.1.2)



So, for a given total energy E, the flow is eusentiélly
three’ dimensional. This enables us to construct a global
or loFal surface of secfion and an assocliated return map
which is foen called Poincare’s map.

"Suppose that two of the variables, aay'q2 and pé,

can be éxpesd%d as action-angle coordinates (I,0):
I ='I(q2.p2) ’ e = e(qz.pz)' ’

where Q2 and P2 are 2n periodic in .

Then the,Hamlltonian'H(ql.pl.q2,p2) becomes:
(q,,P,,Q,(8,1),P,(0,1))= H(q,P,8,1)= E , (1.1.1.3)

where we drop the subscripte on q1 and Pl‘
Suppose that 8H/8I # 0 in some region D of phase apade;
Then (1.1.1.3) can be inverted in D to solwve for I in terms

of q;p,e and E;
I = L{q,p,e:E) . {1.1.1.4)

We write q':dq/de, p': dp/de, so that

F » aH BH F = ] oH BH
q-—Q/B—‘a"E/a—'I" » P'f-p/e—-—a/a—f‘ . {1.1.1.5)

DBifferentiating {(1.1.1.2) implictly, using (1.1.1.4), gives

aH 8H alL _ aH aH aL

'é_ci"'ﬁ"éa" » E-E-]-—a--i---a——-d: » (1.1-1-6)



and thus, using {1.1.1.6), (1.1.1.5) becomes:

¢+ _ _ 8L{(q,p,9:E) e
3y

Q
!

: (q,p,0)E D x ‘g* . {1.1.1.7)

y aL{q,p,0:E)
aq

p

@
We call the 2n-periodic i-degree of freedom system

(1.1.1.7) the reduced Hamiltonian system. Such a system
exists on each energy surface H:E,.andlin each region D of
phase space, in wﬁich our assumption 9H/81 #¥ 0 is wvalid.
The reduced Hamiltonian systenm (1.1.1.7) is essentially
equivalent to a periodically time-dependent system with 1
degree of freedom. 8o, it is sufficient to consider only
the reduced Hamiitonian.

We take a surface of section:
' ' 1 o1
Li{Es,9) = ({q,p,2)e D x 87 | 858, S ; E=E, )

Then the flow (1.1.1.7) induces a map_assocﬁated with this
surface of section, called the return map or Poincare’s map,
defined by following the flow until the return to the surface

of section. That is, the Poincare map P; L—IL is given by
P(Xg )=x{Xgs, 0s+2N) ,

where we write x={(q,p} and x(xo,a) is the flow with an initial
condition (xo, eo). Thus we obtain a two dimensional map P.
fal
Given a solution (q(e),ﬁ(e)), let us linearize  the equa-

tion of motion (1.1.1.7) about (Q(@),p(e)} 3



A ) A
q=q + 6q , P=Pp + 6p

Then the linearized equations are:

d 6q Ll |
& F ) = A(O) {1.1.1.8)
L] ’
. 6p, | 5p
_a'L - i
aqap 5 Bpa
A{B)=
a*L ‘ L E
- Fa T A
| aq* apaq (q,p)

The general solution of the linearized equations are:

8q{e)
. =c,x _{0) + c_x_(0) s {1.1.1.9}
6q(e) 11 22

‘'where x, and x_ are two linearly independeﬁt solutions and

1

.ui(e)
xi(e)z

vi(e)

2

We write X{(o) = (xl(e),x2(e)). Then (1.1.1.9) becomes:
6q{ o)
5p(®) Wl

Without loss of generality, one can choose an independent

6q{(0)
= X(G)X"(O){ ]

6p(0)

pair of solutions xlte) and xz(e), such that .

' 1 o]
x {0} = X, .(0) = .



Then,

85q(o) 6q(0)
= X(9).

(1.1.,1.10)
sp(@) 5p(0)

The linearized Poincare map DP isg

Bq(2m) EQ(0)
= DP_-

sq{2m) Ep{0)

Then, by (1.1.1.10),

u, {(2m) u_{2n)
DP = X(2n) = 1 2
1]
v1{2n) v2(2n)
u, (o) 1 'u2<o) )
where = and =
vl(o) 0 v2(0) 1

The Wronskian determinant of two Bolutioné x

" anq x

2
of {(1.1.1.8) is given by

u.(e) u._(e)
W(e) ={ * 2

vl(e) vz(e)



8ince dW/de = Tr A{(®8).W,
Wie) = w<o>.exp(f Tr a(e).de ) .
' 0

By (1.1.1.8), TrA(e) = 0 for all ©. Thus W(O)=w(0)=1.
- Therefore, get DP = W(2r) = 1, Since det DP=1, the Poin-
care map 1is area-preserving.

I illﬁstrate the Poincare map for a periodically kicked

rotator governed by a Hamiltonian H:

[1 /]
H= Ho (I} + EV(B}-Z 5(t-1)
i=~00
4.4} [+.4)

= Ho(I) + € z z Vm cos 2n(me-at) ,

i=-0 m=1

vie) = v(-e) ,  V(e) = Vies1) .
‘The perturbhation represents a 'kxick’ per unit time. By
constructing a surface of section at t=0 {(mod 1) in the
{I, e, t)-space, the Poincare time-1 map T cén he chtained:

I I = In+ EF(On)
T 3 - (1.1.1.11)

. - 3
en en+1" en+.°(In+1) '

F(e) = -V’{e) and w = H (I).



8 1.1.2. Twiat naps

A particularly important class of areé-preserving maps
ig the clasg of area-preserving twist maps. An area-preser-
ving twist map T is an area-preserving map that has rota-
tional shear: there exist coordinates (&, 1), © an angle

variable such that

= has constant sign , {1.1.2.1)
L+)

where (867,17) = T(e,I) and det (DT)=1 in these coordinates.

Since 6 is an angle variahle, the map T is a periodic anmp
in the plane:’

’y = T(6,I) — (87+2n, I’) = T(e+zm,I) .

(e’, I
Then T can be represented on a cylin&ef. For example,. near
an elliptic fixed point a map typically has twist.

It turha out that any area-preserving twist map can be
expressed as a generating function, and conversely (Mackay et
al, 1984). If an area-preserving map (x’,p’) & T(x,p) sati-
sfies the twist condition ;

ax”’

3p £ 0 fér all {(x,p) , : (1.1.2.2)

then there exist a generating function L(x,x’) such that



p = - aL(x,x’)s ox p’= aL(x,x”)s ax’ . {1.1.2.3)

‘Note from (1.1.2.2) and (1.1;2.3) that

| 8%l exax’ # 0 . ' ' (1.1.2.4)
Conversely, if the geﬁerating function L(x,x') satisfies the
condition (1.1.2.4), then the-reiatidna (1.1.2.3) can be
inverted to’gener;te a map T: (x.p)—a(x',p').

The Jacobian matrix for the map T is ;

Ly o1
- T
DT = 12 12 (1.1.2.5)
L - Loy Lo ’
12 L

where the subscript i denote the derivative with respect
to the ith argument. Since det DT=1,:T ;s an area-preserving
map. Bowever, T is not necessarily periodic. Thefefore the
twist condition (1.1.2.2) is the generalization of (1.1.2{1)
to non-periodic maps.

In thia thesis, I devote my attention to area-preserving
-twiét mapa that gatiafy the twist condition (1.1.2.2), and
if the maps are periodic maps, 1 restrict my attgntion to
maps with zero calabi invariant. To explain calabil invariants,
firstly, it is necessary to define the flux across a closed
curve . The flux across a closed curve C in the plane is the
area occupied by all the phase pqints napped from the.interior
R of C to the exterior in one iteration of a map T (Mackay et
al, 1984). Let C“=T(C) and R‘=T(R) be the image of C and R, so

that R’ is the interior of €¢’. Then ,
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flux across C = Ar(R’-R) ‘= Ar(R-R”), where Ar(u)
represents an area of U; and R’-R and R-R7are shaded regions
in the figure 1.1.2.1. If a map T is a periodic map in the
plane, then the map can be represented on a cylinder. On
the cylinder,eééh rota{ional circle‘c divide§ the cylindrical
phase space into two infinite:parts, Let R bq the region
below the circie C and R’ the region below the circle C’/=T(C).
Since the regions are infinite. in general

Ar(R“-R)-Ar(R-R?) # 0 .

'Therefore; generally the upward and downward fluxes are not
the same and thus the net flux is not zero , in general. By
considering the area.of the finite region between any two
rotational circles, it is easy to see that the net flux is
independent of C. This net flux is kxnown as the Calabi
invariant. So, a periodic map T with zero Calabi 1nvariaanis
a map with zero net flux. If L(x,x') generates a periodic
aréaépreserving twist map, then L(x+1, x‘+1) generates the
pame map, where 2mx is an angle variable. So, they can
differ only by a constant. In fact the constant is just
the ngt flux. To see this, let us take any curve C joining
(x.x') to (x+1,x'+1). Then, it defines a rotational circle p(x)
and its image p’(x”) on the cylinder by the relations (1.1.2.3).
Then the net flux is the difference in areas under p{(x) and

piix’)y ;

12
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net flux I p{x7r1dx’- I Pix}) dx

I aL(x,x')/ax"di; + 8L{x,x")/8x dx

'f dL(x,x ")
‘e

L{x+1,x’+1}-L(x,x7). ‘ . (1.1.2.6)

]

For example, the generating function L(e,e”) for thé
periodic area-preserving twist.map T of tﬁe periodically
xicked rotator(1.1.1.11) in which H;yI):I‘/2 and V(@)= cos2ne
is:

L(8,e”)=1,2(0-0")2-cV(0} , (1.1.2.7)

where the map T is called the standard map or Taylor-Chirikov
mép.
Orbite in an area-preserving twiat map T can be obtained

s

by a stationary action principle. It x,x',x' are three

successive points of x on an orbit, thén

![ldx.x')+L(x'.x")]= p’ - p’ (1.1.2.8)

7|

=0, fTrom (1.1.2,.3)}

and conversely. Let A(x) be L{(x,x). Then the stationary

pointe of A(x) are the fixed point of the map T. For integers
r and 8 with r+1 < é let {xt(rétéa)} be ﬁn arbitrary sequence
of real valuea of x sBubject to fixed initial x. and final X
From(1.1.2.8), this sequence defines an orbit segment if and

only if the action

8-1
Ars = 2 L{xt’xt+1)
’ t=r

13



is atafionary with respect to érbitrary'variations of the

intermegdiate x holding the initial x and final xg fixed.

t !
An infinite Bequenceldefines an orbit if and only if every
finite segment has stationary action.

'Aubry{igag) has some exXample in solid-state physics
corresponding'to the standard map(1.1.2.7). He studied the

"discrete Frenkel-Kontorova model. The model consists of a
one-dimeﬁgional chain of elastically cdup}éd gtomﬂ i at
abscissa u; which is subject to a peripdié potential with

period 2a and amplitude A.  Its energy is:

ma.

' - a A, i
®i{u,)) = Llz{u;  -u;)" +5(1-co8 — )]). {1.1.2.9)

i

|-

He studied the ahsolute minimum of the energy when the atomic

mean distance :

u,. . -u, -
N

N-N’

4 =1im
N-N‘0

is fixed by boundary conditions.

The ground-state {u;) necessarily satisfies

awxaui = 2u.~ u. -u. .+ LLS sin —Ei'= o, (1,1.2.10}

-.which corresponds to the map of a dynamical asystem with the
. discrete time i. So, the energy ¢ plays the role of the
action in a dynamical system and orbits in the dynamical
system correspond to stationary coﬁfigurations of atoms.

By defining the conjugate wvariable of u;
Ii =u, -u; .4 and ei =u; {mod 2a)

14



(1.1.2.10} becomes ;

AR ey
T = Tyt S 8030 O, =0,

This is just the standard map (3.1.2.7).
§ 1.1.3 Reversihle maps

A dynamical system is reversible if it i’ conjugate to
its time-reverse by a coordinate change whose square is the.
identity{(called an involution)(Moser,1973).

Let us consider a first order system;
x = fix)., {1.1.3.1)

wherelx and f-are n-vedtors. Then the systen ié reversible

if there exists a coordinate change S of Rn , Buch that

8= I({identity)
and : {(1.1.3.2)

-F(x)=8.F(8-x).

S0, if x,(t)is a solution of (1.1.3.1), then x (t)=8.x, (~-t)
‘is also a solution of (1.1.3.1). For example, reversging

all the velocitiee of a potential systme:

-

X=v ., v = - 9.U(x)

reverses .the flow.
A map T is said to have symmetry S if 8 is amn orienta-

tion-reversing involution

15



Det(DS) = -1 ,

8*=(T.S)*=I(identity) , (1.1.3.3)

where DS is the Jacobian matrix of S.

Then T? = 8T8 is the inverse of T, and thua‘T is conjugate
to its inverse'by an orientation—reversing involution 3.
That is, if ((x;, ¥y: ), i€Z} is an qrbit of T, then

{ S(x;,y;},1 € Z ) is an orbit of T™. So, possession of a
symmetry S is.equivalent to réverservilitf in continuous
systems(1.1.3.2}. ff 8 is a symmetry for T, then so are Tmb,
meZ, since T".8.T" = 8. In particular, TS is called a
complementary symmetry, sinde T can be factorizgd.into the
product (T8).8 of two involutions.

The get of the fixqg points of symmetries is used to
locate éymmefric ofﬁits as will be seen ltater. Usually, the
notation Fix{8) is used to denote the fixed points of the
'aymmetry S, and hereafter I use this notation. A fixed point
of an orientation-reversing involution S has a neighborhood

in which there exist coordinates(X,Y), called the symmetry

coordinates, such that
S(X,Y) = (X,-¥) . (1.1.3.4)

Therefore, the fixed points form a curve called the asymmetry
line. This was shown by Finn(1974.) If x iB a fixed point

~of S8, then Tn(x) is the fixed point of TQHS:

Sex =x = T8t = TNx .

80, Fix(T2™g) = T".Fix(8). Similarly, Fix(T22*1.g) = T™.Fix(T.
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Therefore, a family of symmetries (TmB, neZ) separates into
two half-families (T2"S) and (T2"*'3).
I give some'examples of reversible maps which are also

area-preserving twist maps. Thgy are_given below.

The general DeVogelaere map T(1958):
, :
T:[x]_q[x -Y + £(X) ] | _
v v’ X - £(X)) {1.1.3.5)}
can bé factorized into the product (TS)«S of two involutions:

M

rs . ‘
s [x]_‘[ X‘= ¥ + £(X) ] (1.1.3.6)

¥Y’= X -~ £(X7)

]

For this maﬁ. coordinates (X,Y) are symmetry coordinates

for 8- syﬁmetry and symmetry lines Fix{S) and Fix(TS) are:
Fix{8): ¥Y=0, Fix(TS9): ¥= X-f(X) . {1.1.3.7)

Since det DT=1 and ax'/aY=-1 for all (X,Y), T is an area-
preserving twist map. The generating function th.x’) for

the map T is:

L(X,X’) = X-X° - F{(X) - F(x") , (1.1.3.8)

where F’(X) = f(X) .

Particularly, the guadratic Devagelaere map in which f(X)=

. psX-{1-p)}X* hase been extensively studied by Greene et al (1981).

17



The McMillan map T{1871):

I x x? = -y + 2f(x)
T —) 2 {1,1.3.9)
Y 4

Yy X

is also a reversible map, since it can be factorized into
o ;

the prdduct (T3).5 of two involutions:

x _x' b 4
S: — rF .
1y ¥y . =¥y + 2f{x) ’
rd
TS:[ x ]-4 x' =Y .
¥y 4 X :

S0, two symmetry lines Fix{S) and Fix(TS) are:

(1.1,3.10)

Fix(8): y = f(x), Fix{T8): y = x . {(1.1.3.11)

Since det DT = 1 and ax’/@y = -1 for all (x,y), the McMillan
map T is an area-preserving twist map. The generating function

Lix,x”) for this map T is:
L{x,x’) = x-x’ - xeF{x) (2.1.3,12)

where F (x) = £(x) .
When f{x)= %.(1-ax*), T is called Henon’s guadratic map
(1969), and when f(x’:cx + x*, T is called Helleman's
standard guadratic map{1980). In fact, the McMillan map
is equivalent to the DeVogelaere map by an area-preserving
coordinate change:

x =X

. (1.1.3.13)
Y + f{Y) .

"
i
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The standard or Taylor - Chirikov map T (Chirikov, 1979) -

is:

y ¥y =y + £(x) '
T: - .

x x" =x+y’ ' (1.1.3.14)
f*{x) = -k 8in x.

The standard map T is doubly reversible, since it has two

independent symmetries S8, and 9;:

y =y + £{x) y?=
S,:[ 'I'S,:[

, P

X = -X s X = - +y .

yl = -y = £(x) _ y1= -y (;.1-.3.15).
Sl:[ ’, TS;-[ ’

X =X s X=x -y .

Since the Btéhdard maﬁ is doubly periodic in x' and y, one
can regard the map as acting on the torus.

Then the syﬁmetry lines are:

Fix(8,); x =0, m, Fix(TS, )ix= y/2, y/2+n,'
Fix(S; ): ¥y= ~fi{x)r2 , -f{x)/2 + mu, (1.1.3.16)

Fix{T8;)t ¥y = 0 .

Note that the standard map can also be put into the
generalized DeVogelaere form {(1.1.3.5) by an area-preserving

coordinate change:

X =x
[ ' (1.1.3.17)
Y = -y + x - T(x) .

S
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8§ 1.2 Periodic orbits

In‘this_section. I disc@ss periddic orbits in reversible
area-preserving twist maps with zZero net flux.

In 8 1.2.:; I'discuss the iinear stahilify and the Poin-
care index of fixéd points in area-preserving ﬁapé. In § 1.2.2,
for area»preserving twist maps with zero net ffux; ﬁeriodic
orbits are definrd in the action representétionn and their
stability are considered in the action representation. Then
I discuss the Poincare - Birkhoff theorem which proves the
.éxistence'of many periodic orhits which are called Birkhoff
orbits. In § 1.2.3. symmetric periodic_orhits are defined in
reversible maps. I describe their connection with symmetry
linés and the dominant symmetry for Birxhoff-orhitsf In the
final subsection(§ 1.2.45, I discuss bifurcation of ﬁeriodic
orbits in reversible area-preserving maps, which’means the

branching of periodic orbits as a parameter is varied.
8 1.2.,1 Stability of periodic orbits

A point % is said to be a fixed point of a map T if . <
T.x = x. A point x is said to be periodic if it is a fixed
point of some iterate of T. The smallest positive integer n
such that Tnx = x 18 called its period, and its orbit is
called a periodic orbit of period n. PFeriodic orbits are
impbrtant ﬁecause they govern the behavior in a neighborhood.

The type of the nearby behavior is given almost completely

20



by the eigenvalues of the linearization of a.map ™ about
the périodic orbit. Since a periodic¢ point of period n of
a map T can be donsidered as a fixed point of T, I will
consider only fixed points without loss of genera}ity.

A fixed point x of a map T is said to be Liapundv
stable if every neighborhood U has a subneighborhood,

puch that

“wvyecu ,Yxezt, - (1.2.1.1)

‘where Z¥ is the non-negative integers.
also, a fixed point xAbf amap T is said to be asymptotically
stable if it has a neighborhood U, such that

T(U) c .U, n T = (xd . (1.2.1.2)

kad '
If x is asymptotically stable,then it is called an attractor
with its basin U. An attracting fixed point is Liapuﬁoﬁ
stable, but not necessa}ily vice versa. A fixed point is
said to be unstable if it is not Liapunov_stahle.

The linear stahility analysis of a fixed point is to
examine the stability of the linearization of .a map T {i.e.
the derivative map DT, alsoc called the Jacobian matrix) at
the fixed point. Its stability is called the linear stability
of the Tixed point. This is given by the eigenvélues of ﬁT,
which are called the multipliers of the fixed point. |

Thé Jacobian matrix DT can be put inté its Jordan nﬁrmal

form by a-similarity transformation (Nering, 1963):
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By (1.2.1.3)

where the B, dfe Jordan blocks of the form:

A,
J

(=18

B, = ‘ " . ‘ (1.2.1.4)

[ =1
.

L | j
where Aj .ig an eigenvalue of the Jacobian matrix DT. IfT alil
the multipliers of.the fixed point are inside the unit circle,
then the fixed point is asymptotically stable under DT. Only
if there is some ﬁultipliers outside the unit circle, it is
unstable under DT. In fact, in these two cases, the fixed
point.alwaya has the same stability underJT as that under ﬁT.
Thus, in these two cases, the multipliers are sufflcient to
determine the stability under T. In the remaining cases,
there are some multipliers on the unit circle and the others
inside the unit circles. If DT has a nontrivial Jordan block
{i.e. of order greater than 1) with eigenvalue on‘£he unit
circle, then the fixed point is unstable under DT, and always,
'unstable undef T. If all the eigenvalues on the unit circlé
have diagonal Jordan blocks (i.g. of order 1), then the fixed
point is ﬁtable under DT. But the ﬁtability under T is not
given by multipliers. So, in this case, nsnllneaﬁ-analyais

is required to determine the stability under T.
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I restrict my attention to the stability of fixed points
in two-dimensional area-preserving maps. In thesé maps, the
fixeﬁ points cannot he aaymptoticall} stable, since fhe area
is preserved under evolution. .

The Jacobian matric M of a per}odic drbit of pe}iod n

(i.e. the derivative map DTn_) in a 2-dim. area-preserving

map T is:
' n-1 .
R =_.|| DT (Qs. ;;) . {(1.2.1.5)
i=0

where ( (%;,¥:.), i = 0,..., n-1) is a periodic orbit of
period n, and DT ia the derivative map of a map T. The multi-

pliers » are the roots of

‘A -Tr M:x + Det M = O R : (1.2,.2.6)

whére Det M = 1. |
Area-preservation implies that Det M=1, and thué the product
of the multipliers of a periodic orbit must he 1. Together
with reality of M, this restricts them to be a reciprocal pair
of reals, or a complex conjugate pair on the unit. circle. The

mualtipliers are:

r ¥
2

B

A = t ((TrM)y* /4 - 1)° . (1.2.12.7)

Thus, the linear stability of a periodic orbit is determined
by the trace of the Jacobian matrix(i.e. TrM) or some derived

quantity called the residue(Greehe, 1979) defined by:

R = {2-TrM)/4 . (1.2.1.8)
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" If TrM32 or R<O, then fhe multipliers are a reciprocal pair
of positiﬁe reals with one nultiplier greater than 1,
In this caae; the periodic orbit is linearly unstab;e! and
also unatable under T. If | TrM | <2 of 0 <R <1, then the
multipliera are a domplex conjujate pair én the unif circie.
In this case, the periodic orbit is linearly stable. In fact,
this periodic orbit is typically stable, apart from the cases
ﬁ:szq, 1/2 corresponding to 1,3~ , 1,4- resonance. The:caae_
of 1/3-resonance is unstable, and the case of 1/4-~resonance
can be stable or unstable. These follow from a normal form
analysis and Moser's twist theorem_(HoBer. 1973),and I will
discuss these in § 1.2.4. If TrM <-2 or R>1 , then the
multipliers are a reciprocal palr of negative reals with
one multiplier less than -1. In this case, the periodic
orbit ig linearly unstable, and also unstable. In the remain-
ing cases, TrM is 2 or -2, and R is 0 or 1. In these cases,
the periodic orbit is linearly stable or unstable according
as its jordan normal form is diagonal or not, and when it is
linearly unstable, it is also unstable. In fact, even when
the Jordan normal form is diagonal the periodic orbit is
typically unstable (Hagxay, 1982},

Ihe quadratic form: |

v = -Cx* +(A-Dixy +By* o (1.2.1.9)

is invariant under the Jacobian matrix M of a periodic orbit

(Greene, 1968);

H=|:A B] det M = 1
Hd
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The quadratic invariant curve is an ellipse or hyperbola

according as a is positive or negative:

L

a’= 1 < (TrMs2)* = 4R(1-R) . . 7 4 o 102010100

If o <R <1, tﬁen the invariant curve is an éiliﬁ;équn thLB
case, the multipliers » can he written as exp(tlm} and the
residue R 18 s1n (m/Q). Then,tangent 0rb1t5 on the 1nvar1ant
ellipse rotate about the perxodzc orb1t w1th the averager‘
angle «x per period. So, the periodic orbit is called an
elliptic orhit. The oriéntation & for the invariant ellipse

is given by :
tan 28 = (D-A)/(B+C) . C(1:2:1.11)

The ratio of the major, p+, to the minor, P_» Bemiaxes can

be also obtained by : -

2
[ 2(p_sp,) ] _ 6. RU1-R)

1+(p_rp )? (B-C)? (1.2.1.22)

I¥f R<O 6r R>»1, then the invariant curve is an hyperbola.
Then tangent orbits on the ;nvariantuhyperbola diverge expo-
nentially from the periodic orbits. When R<O the multipliers
are positi#e, and thus the périodic orbit is called an
ordinary ({or regular) hyperbolic orhit; while when R > 1
‘the periodic orbit is called an inversion hyperbolic orbit

{ or a.hyperholic orbit with reflection ) because the
multipliers are negative. The angle Yy betwéén the asymptotés

* of this invariant hyperbola is given hy;
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tan® y = 16.R-(R-1)/(B-C)*. - (1.2.1,13)

If a defined in (1.2.1.10} is zerb, then R is 0 or 1.
In this camse AzD, and B or C 1is zero. If one of B and C
is not zero, then the invariant curves are a set of parallel
lines:
y=constant or x=constant .
Iﬁ this case, there is a line of fixed points or period-~2

orbits‘of H‘according-as R is 0 or 1 :
Yy =0 or xXx =20

Except the line of fixed points or period-? orbits of M ,
tangent orbits on an invariant straight line diverge linearly
from the periodic orbit. If both B and C are zero, all the
points in the tangent space are the fixed points or peri&ﬁ-?
points of M according as R is 0 or 1. In this case the
perliodic orbit is linearly stable. When R=0 the multipliers
are a pair at 1 and the periodic orbit is called an ordinary
{or regular )parabeglic orbit, while when R=1 the periodic orbit
is called an inversion parébolic orbit {or a paraholic orbit
with reflection) because the multipliers are a ﬁair at -~-1.
All the cases aré sketched in figure 1.,2.1.1 for a linear
area—preserving map.

If a fixgd point has no mult;pliers equal to +1,then the
fixed point is isolated:it has a ﬁeighbornood in which there
are no other fixed points(Hackay,iSé?); Similarly, periodic
orbits with no multipliers equal to +1 are isolated from

periodic orbits of the same period, or a submultiple.
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Therefore, a periodic orbit which is not ordinary parabolic
is an isolated periodic orbit. For an isolated fixed point,
a topological iﬁdex'of a fixed.pqint, called the Poincare
index, can he defined (Arnold and avez, 19685. For a map T
on a plane, consider a vector field v such that the field
.vector v(x) at x is the vector connecting x with its image

T{x):

vix) = T(X) - x . : ' (1.2.1.14)

A point at which the field vector vanishes is called a singu-
lar point of the vector field. A fixed point x of a map T is

a siﬁgular point of the vector field defined by (1.2.1.14).
Notelthat the components of the field have no singularities

at a singular point. The tern *singular point’ stema from the
fact that the directions of the field vectors change near such
a singular point, ingeneral, discontinuously.

The'index of a closed curve C which does not go through any
slngulﬁr points of the field is defined as the number of times
that fhe field vector at x encircles 0 as x traverses C , and
the sign of the index is positive or negative according as the
encirclement and traversal are in the same or opposite direc-
tion. The index of a closed curve does not change under con-
tinuous transformaiion'of the closed curve, as long as the
curve does not pass through any singular points. The direction
of the field vector changes continuously away from the singular
pointas. Therefore the numhér of encirclements also depends

continuously on the curve, and must be constant, being an
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integer. So, the index of a closed curve containing no fixed
points is zero, provided that the closed curve can be shrunk
to a point. This is hecause it can be shrunk to a curve small
enough that the directions of field vectors are restricted to
some angle, so that no encirclements are possible. Similarly,
the index of a curve does nqt'change under continuous-trans--
formation of the vector field or the map, as.lqng as there are
no fixed points of the map on the curve. The index of an
isolated fixed point is the index of an& élosed curve surround-
ing it and no other fixed points. The index of a closed curve
is the sum of the index of each fixed p;int contained'in the‘
closed curve. In area-preserving maps, the index of a fixed
"point is +1 or -1 éccording as the residue R of the fixed point
is greater or less than 0 (Arnod and Avez, 1958).

In an area-preserving mﬁp T, the linear'stabilifyrin
one direction of time implies the same stability in thée other
direction{Arnold, 1978). This can be seen easily as'follows .

The derivative map DT of T satisfies :

(oT)*.7.0T = T ,

' . (1.2.1.15)
J‘:I:O -1]

where the superscript t denotes the transpose of a matrix.

Then, the characteristic polyncmial p()») of DT is reflexive: .
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P(A) Det(DT - Al)

Det(DT* - AI) _ : (1.2.1.185)

U

A* Det(DT - A'.1) ,

where I is the identity matrix.
Thus, if‘an pe;Eodic orbit is stable under T, the periodic
orbit is als# gstable under T'. Recall that the Liapunov sta-
bility is defined only in the case of the forward direction

of time ( see(1.2.1.1) ) .
§ 1,2.2 Periodic orbits in twist maps

In this subsection, I consider an periodic area-pre-
serving twist map T with zero net flux. Then, there exists
a generating Punction L(x,x’) for T which satisfies the twist

condition{(1.1.2.2) or {1.1.2.4)and has zero Calabi invariant
?L/soxax’ < 0, Li{x,x’) = L{x+1, x +1) (1.2.2.1)

Here, 2nx denotes an angle variable.
Consider generalized paths, such that

xi+q= x1+ P for some integer p,q . {1.2.2.2)

They are called periodic.patha of type(p,q).
Orbites satisfying(1.2.2.2) are called periodic orbits of type
{p,q). and are given by the stationary action principle:a path

of type{p,q) gives an orbit of type(p.q)if ites action

A:ZL{xi, X ) (1.2.2.3)
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is stationary with respect to variations keeping

xq =Xy +P
If the generafing funcfioﬁ L éatisfiés (1.2.2.1), then the
action of periodic paths of t?pe(p}qi is bounded below, and
thus there is a minimizing periodic orbit of type (p,q)
{Aubry 1983, Mather 1982). There can be more than one mini-
mizing orbit. This can be seen easily as follows. Translat-
ing one minimizing orbit by an integer in fime or space or
both gives another minimizing orbit..lSince the net flux is
Zero, theaé minimizing orbits have the same actlon; This
implies existence of saddle points with one downward direc~
tion.of the action (1.2.2.3) between the mihima(Aubry 1983,
" Mather 1982}, The} are éalled minimax periodic orbits.
Therefore,thére are two types of periodic orbit of type(p,q):
one is minimizing periodic orbit,and the other is a minimax
periodic orbit.

Hadkay and HEiss(lB&Bi have examined the stability of
periodic orbits in the action representation. By the

stationary action principle, an orbit satisfies (1.1.2.8):

xi) + L;(xi, X. )y =0,

L‘(xi- i+l

1'

where the subscript 1 denotes the derivative with respect

to ith argument. Then, the tangent orbits (Z;) satisfy :

Loy (X5 gr X308 4
+ [LQQ(xi—1’ xi) + Lli(xi' xi+1)] :1. ‘ {1.2.2.5)
ot Laadxg,x; 08 =0
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If a periodic orbit of pericd q has the multipliers i, then

there exists a tangent orbit satisfying

X | (1.2.2.5)

z = A Ty ,» Lo =1 Cq ' {1.2.2.7)
Combining (1.2.2.7) with (1.2.2,5), a system of equations to

solve is:
M{(A)« T = O ' : (1.2.2.8)

wheré L is the column vector {g;) and M a q x q matrix
(Hij,léi,jéq } with entries, such that

. for q » 2,

H1,1--1= Logt®5 40 %530
Mip = Lop0Xg_goX) + Ly O, X5 00,
1,141 LaofXir X300 Mg = ML xg axg )
a1 * Lot » Xq)
for q = 2,
_Lzzto,l) + L11(1, 2) A7 L21(0,1)+L;2(1,2)
M())=
L, {1,2) + L12g2, 3} ;22(1,2) + L ,t2,3)
for q = 1,
H(A) = Lo (0, 1) + L, 11,2) + ™ L, (0,1) + x L, (1.2)

' To have a non-trivial solution for e ,
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Det M(A) = O - ' {1.2.2.9)

where for q=1 Det M()) means M(\).

After a expansion of Det M{\), one finds :
o q-1
Det M(X)=Det M(1)-{x + A" - 2). || (L (%, % ).
i=0 17 71+1
Since the residue R of the periodic orbit is (2-r-A1)/4

defined in (1.2.1.8), the residue R becomes:

. q-1
1 -1
R - E-Det M(1)-¢( !lo(-L12(xi R xi+1))) {1.2.2.10)

Note that M{1} i=s tﬁe matrix of the second va;iafions of the
action in the space of periodic paths of type(p,q). Thus, the
multipliera of a periodic orbit of period q are related to
the second variations of the action ahout the periodic

orbit. Under the twist condition (3*L/8x8x“<0), the denomi-
nator off1.2.2.1b) is negative. So.;t a minimum of the action
all the eigenvalues of M(1) are positive, and thus R < O.

At a minimax with one downward direction, all the eigenvalues
‘except one are positive and thus R>0. So, minimizing'periodic
orbits have negative residues, while minimaximizing periodic
orbits have positive residues.

Birxhoff{1927)showed that every periodic afea-preserving
map with zero net flux has at least two periodic orbits of
type (p,qifor each rational pr/q in ah appropriate interval
which is often called the range of twist and these orbits are
called BirkhoPP orbits. This is called the Poincare-Birkhoff
theorém. For example, a map near an elliptic fixed point with

nmultipliers eila typically has twist, and the range of twist
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is hetwéen 0 and «x/2n. So, in this range of twist there exist
at least two periodic orbits of type (p,q) for each rational
p/q. Arnold and Avez(1968) have proved the Poincare-Birkhoff

theorem only for maps close enough to an integrable twist map:

.
1] [

T_ & -
€ e pl

I + ef(l,0)

] +‘2ﬁu(15 + eg(I,e) K

where x“(I)¢< o , Det (DT_)= 1, f and g are 2n-Periodic in @,
£(0,0)= 0 = g(0,0) and thus (0,0) is the fixed point of T,
Here & is an angle-variable. Even though their proof is
restricted to Te with sufficiently small e; it is easy to
understand, and thus I reproduce it. Consider an invariant
circle f of T on which x(I)= m/n, where T is the integrable
twist map when € = 0. Théﬁ, every point on I' is a fixed point
of ™. Also, consider two invariant circles rt andr  of T
hetween which the invarjant circle I' lies. on P+, o> n/n

'and on I'’, wm< m/n. Then, under the map:Tn, every point on

rf rotates counterclockwise, every point on r- clockwise, and
every point on I' remains unchanged. These relative twista are
preserved for T? if € is small enough. So, on each radius

6 = constant, there exist a point I(©,€e) whose aﬁgular coordinate
® ia unchanged under TE. These radiallf maﬁped points make up

a curve r‘E . Applying Tz to PE gives anbther curve 'I'l:-l“e .

Since Tg is area-preserving, and PE and TIEI-I"E enclose the fixed
point (0,0), rE and TE-PE nust intersect each .other. Ignoring
the degenerate case in which TE-]"E coincides with rE , there

must be even number of intersections. It is helpful to see
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figure 1.2.2.1. Each intersection point is a fixed pbint of Tg.
Examining the nearby flows about a fixed point under TE ; one
finds that half of all the intersection points are elliptic,
the other half prdinary hyperhqlic » and'elliptic and ordinary
hyperbolic points alternate (see figure 1.2.2.1). Consider an

elliptic Pixed point x ; TE % = %. The orbit of x under Tc is

) £ B

€ x}. Then, all pointe of the orbit of x are

{x, TEx,---, T
fixed points of TE. Hence, the set of elliptic fixed points
splits into orbits consisting of distinct n points. Let k he
the number of such orbits. Then, there are k-.n ellibtic fixed
pdints and also there are k-n ordinary hyperbholic points,
because the number of ordinary hyperbolic fixed points is
"the same as that of elliptic fixed points.

Let F be the difference in actions between the mini-

nizing and minimax periodic orbits:

F =A_ . . - A . . {(1.2.2.11)
minimax min

Then, F can be interpreted as the area that is transported
hbetween the minimizing and minimax periodic orbits per
iteration (Mackay et al. 1984). This can he seen easily as
follows . Join up the gap between two neighbofing minimizing
points by any curve € passing through the minimax point

lying between the two neighboring minimizing point(see Figure
.1‘2'2‘2)' Let us descrihe the chosen curve €C hy a function
Po(xo). Then, one can close fhe imagqe gaps with the image of
c . ‘The images pt(xt) of C , with t=1 to n, form a partial

barrier with one turnstile in the chosen gap. Thus, one can
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_blame al] the transport on the chosen gap (see Figure 1.2.2.2)

-

The ftlux through the turnstile is:

F

o

f n I po dxg (1.2.2.12)
aL ~ \s
5;; (xn_l, X, ) dxn I ax (xo » Xy )dxo .

If.xt-l” x, and Xy 1 arF tprgg successive points on an orbit,

_then

So, z I dxt(———(xt 10 %)+ 5;_(xt y X 1) =0 .
t=1 t t

- .Add this in (1.2.,2.12). Then,

1
It

I A  , A = z Lix, , X, ) (1.2.2.13)

= A . . - A .
minimax min

-
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Fig,ul-e 1.2.2. ’ . Bﬂ—‘khoﬁ O"Lf'éﬁ f.o'..
an al-ea-Fl-e.sewing_ twist -ma’:? Te close
+o0 an m{:egmue 'EW:‘S‘il: map. & deno-&eﬁ |

an eN?P-Erc point and X orclina}—y hype}-bolic
Fc?‘n‘ﬁ'.
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Fiaul-e .2.2.2 . Formation of a Far—f‘ial

barier with +wnstile {rom pel-roth orbits.
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§ 1.2.3 Symmetric periocdic orbits in reversible maps

Reversihility implies that if {(x;,¥:)) is an orbit of
a reversiﬁle map T with Bymmétry S (see §1.1.3), then the
reflectiqn {s(x;,¥Y;)) of the orbit by S is an orbit of its
time reversal T', A symmetric orbit is an orhit that is
invariant under 8 : an orbit that is its own time réversal.

Firstly, I discuss the stability of sfmmetric periodic
orbits in a reversible map T. A Bymmetrié fixed point cannot
be asymptotically stable, because if U were a neighborhood
of the symmetricrfixed point x, satisfying {(1.2.1.2)(i.e.
a basin of attraction}, then Sﬁ wokld be a neighborhood of

%X, hence

e s.t. T U Csu for x> ko, , (1.2.3.1)

and applying sz to (1.2.3.1),
K
T U C SU for k> kg

’ (1.2.3.2)

which is a contradiction to the fact that T)c U contracts
asymptotically to (x). Also, like the case in area-preser-
ving maps, the muitipliers of the symmetric fixed points come
in reciprocal péirs {Devaney, 1976). This can be seen easiiy

as follows. The derivative map DT{(x) of a symmetric fixed

point x is :
DT({x) = DTS(x)-DS(x} , {(1.2,.3.3)

because T = (TS).9 and S-x = x
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8ince 8= I = (TS)*, DS(x) and DTS{x) are linear involutions.

80, for a symmetric fixed point x the derivative map DT(x)

is a linear feversihle map. Then

nomial of DT(X) is reflexive:
-

Det(DT{(x) - AI)

p{A)

- Det(DT™* (x)-2I)

= A* Det(DT{x) - »* I)
Therefore, if » is an eigenvalue
an eigenvalue, excépt in the cas

ation is required in the case \

, the characteristic poly-

(1.2.3.4)
/Det{DT(x)).

of DT{x), then A? is also
e A = %1, Special consider-

= 1 . Since linear involu-~

tione have determinants 1, Det(DT(x)is 1 or -i. Therefore

the multiplicity of eigénvalue -

according as Det(DT(x)) is 1 or

1 must be even or odd

-1. Then the multiplicity

of eigeﬁvalue +1 is determined by e€limination, dépending on

Det(DT(x)) and the parity of the
also, ﬁy (1.2.3.4), the linear s
point in one direction of time i
other direction.

all the periodic orbits in
gymmetric(see 51.5.45. Periodic
are called unsyﬁmetric periodic
fixed point of a reversible maﬁ
fixed point of T, where Sx # X.

'_p(A)of the unsymmetric fixed poi

PUXN)

]

Det(DT(x) - AI)

A* Det(DT(Sx) - »* 1

it
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dimension of the phase space.
tability of a symmetric fixed

8 the same as that in the

réverslhle maps are not

orbits which aré not symmetric
orbits. If x iz a unsymmetric
with symmetr&'s, then Sx is a

The characteristic polynomial

nt is:

(1.2.3.5)
)/Det$DTSx).



Therefore, if DT{x)has an eigenvalue X, then DT(Sx) has an
eigenvalue A7, thg that_for an unsymmetric fixed point, the
stabhility in one direction is not the same as that in the
other direction, in general, because generally the derivative
mép DT(x) is not a lipearrinvolution. But, if T is also area-

preserving, then (1.2,3,5) becones;

Det{DT(x) - Al)

PiX) .
(1.2.3.56)

" Det{DT(Sx) - AI) .

Hence, in this case, x and Sx have the same eigenvalue.
Secondly, t descriﬁe the connections between asymmetric

periodic orbits and symmetry lines. If x is a.point of a

symmetric orbit of a reversible map T with symmetry S5, then

there exists some n such that

S:ix =T +x . (1.2.3.7)

If n is even, then

S-Tnjz-x = Tn/2 X . . _ (1.2.3.8)

and thus the orbit has a point ™ 2% on Fix(8), the

symmetry line of S (see § 1.1,3). If n is odd, then
n+1 n+1

TS.T 2 x =T 2 x , (1.2.3.9)

. n+1
and thus the orbit has a point T 2 x on Fix{TS), the
symmetry line of TS, - Conversély, a periodic orbit with a
point x on some symmetry, e.g. Fix(5), is symmetric: since

S.x = x, ST¥ x = T°¥ x for any k, and thus the periodic

41



orbit is" invariant under 8. _#An intersection point of two
symmetry lines, Fix(TmS) and Fix(TnS). is a fixed point of

Tn-n

and thus its orbit is a sygmetric periodic orbit.
Conversely, a pbint of a periodic orhit.of period q on Fix
(T™S) is an intersection point with Fix(Tm+qu) for any k € Z.
Therefore, the intersection pqint of the symmetry lines,
Fix(Tm+qu) for all X, is a perliodic point of period q.

If a periodic point x of‘even.periad'Qn lies on Fix(8),
then T'x also lies on Fix(8) by (1.2.3,8). Similarly, if a
periodic point x of odd peflod {2n+1) or (2n-1), then Tnx.lies
on Fix (ST) or fix (TS). Conversély, if x lies on Fix(8) and
TMx lies on Fix(T8), or Fix(ST) or Fix(TS), then x is a
periodic point, with period‘ﬁn, 2n+1, 2n-1, respectively,
where 2n, 2n+1 and 2-1,hin Boﬁé cases, may be multiples of
the period. Therefore, given a complementary paif of
symmetries, a periodic orbit of even period has two points on
one symmetry line anq none on the other, and a periodic orbit
of pdd period has one on each symmetry line. These relations
hetween symmetric periodic orhits and symmetry'lines can be
used ﬁsefully in locating symmetric periodic orbits:
a symmetric periodic point can be evaluated by gqoing only
halfway round the orbit.

Finally, I discuss the dominant half-line for Birkhoff
- orbits (see 81.2.2) in reversible area-preserving maps.
For example, I consider the standard map £1.1.3.14). For the
standard map T with a.Bymmetry S,, T tan be represented on a

torus, because T is doubly periodic in Xx and y (see (1.1.3,15)).
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There are two symmetry half—lineS‘for S; and TS,, respectively:

Fix{S;}): x =0, n, Fix{TS,): x = ¥y/2, y/2+n

Therefore, there are four half-lines. A rema;kable. but not
mathematically understood, observation is that periodic
orbits of fype(p,q) with positive residues have one point on
the half-line x=0 (Shenker and Kadanoff, 1982). So, ‘this
half-line is called the dominant half-line, and the other
three half-lines are calied-subdominaﬁt half-lines. Futhgf-
mor;, on tﬁe line x=n,»thére is a point with positive or
negative residue according as q is even or odd. on the line
x= y/2, one finds a point with positive or negative residue .
according as p is‘even or odd, and on the line x=y/2+n there
is a point with positive or negative residue according as
both p and q are odd or not. This is illustrated in figure
1.2.3.1 and tabulated in table 1.2.3.1. If a point xg.of a
Birkﬁoff orbit of type(p,q) lies on the initial line, then
the half-way point round the orbit lies on the final line
(see tah}e-1.2.3.1}. Here, thé half-way point is Tnx° when
q is 2n of 2n-1 . In this way, -Birkhoff orbits and 5ymmetri
half-lines are related. These relafions are very helpful in

locating the Birkhoff orbits of type(p,q).
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x=0 A= X=2.7L

Fté.m'-e 1.2.8.] : The relations between.

Burkhoff orbiks and symmetsy nes. O
demotes a. mintmaximizing. Birkhoff orbif
of type-(7.4) and X a wramizing. Budhoff-
 orbik of fype—CP,H). |



rY R

P/a initial line final line initial line final line
ocdd/even x=0 X=n . X=y/2 X=y/2+n
odd/odd x=0 X=Y/2+0 x=n X=y/2
evensodd X=0 X=y/2 X=q =y /2+R

Table 1.2.3.1: Symmetry-lines Tor Birkhoff orbits of type
(p,q). R+ and R~ denotes positive and negative residue,

respectively.
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§ 1,2.4 Bifurcations of periodic orbits

In this subsection,_ I discuss genéric bifurcations in
reversible area-preserving maps with one parameter'and
anomalous bifurcations in the standard map. Bifurcations
mean the 5ranching of periodic orbits as a parameter is
varied.

Meyer{1970) and Rimmer{1974) have obtained the generic
_results for bifurcations in arga-preagrvin§ maps and rever-
's8ible area-preserving maps, respectively. It may be nece-~
ssary to Bstate the meaning of the genericity in dynamical
systems used by mathematicans beéause the meaning of the”
Qenéricity used by mathemathicans is weaker than that used
by physicists{abraham and Marsden 1978, Wightman 1981).
What the adjective ‘typicalf should be defined to mean is
required to Btﬁdy what actually happens in *typical’ Hamil-
tonians{or maps). Physicists usually mean by the adjective
ttypical’ that the exceptional set is a small uninteresting
set. One notidn of ’small’ is measure zero with respect to
some measure . However , there is no natural measure to put
on the family of Hamiltonian systems ( Wightman, 1981). On
the other hand , there is a natural topology in the space of
Hamiltonian systems, 80 called the Whitney topology{Abraham
and Marsden 1978, Wightman 1981): two Hamiltonian systems on
the phase space M are close in thé c’ Whitney topology if
all the derivatives of two Hamiltonians up to order r are

uniformly close over all M. A small set in a topological
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space is a nowhere dense set: the complement 6f the closure
of the small set is a dense opeh set. Therefore, if the set
of the exceptional points_ln the space of Hamiltonian systemns
is a nowhere dense set, then the set of the non-exceptional
points is an open dense set. Thus, every point in the spéce
of Hamiltonian systems has a non-exceptional point in its
every néighhorhood. But, in fact, a much weéxef notion is
useful iﬂ mathematics because fﬁf example the theorems about
generic bifurcations makxe a statement about all bifurcations
of all periodic orbits in Hamiltonian systeﬁs. In a weaker
sense,the exceptional set is a meager éet: a cﬁuntabie
intersection of open dense sets, which is 6alled a residual
set. To sum up , Mathemathicans use the adjective 'generic’
in a topological sense , not in a measure-théoretical sense.
Thefefore, a proof that a property of avsystem is geﬁeflc
does not establish necessarily that probably , a rdndomly
chosen system has the property in a measure-theoretical sense.
However , the proof establishes tﬁat systems whose Hamiltonians
are sufficientl} close to the system have the property.
Firstly, following Meyer{1970), I discuss generic¢ bifur-
cations in area-preserving maps. Let I be an interwval and
T: R* x I 3 R* a 1-parameter family of area-preserving maps.

Then, for each € € I, TE= TlR‘ is area-preserving.

x {€)
Let (X,,€,) be a fixed point of T :

Ti{Xe,E6) = 'I'E (Xq) = Xg , Xpo€ R* .|
[+] .

If the multipliers of the fixed point are not +i, then there
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exist ﬁeighborhoods U and V, Xo€ U CR* and e;e vV ClI, and

a function f:.v 4'U, such that f(eg;, )= X, and {((f(e),e); &€ € V)
é U x Vris the fixed boint set of T ;n Ux V. This results
from the imbliét function theorem (Apostol, 1973).  Thus, a
map TE whkich has a parameter value € sufficigﬁtly close fo €,
has a unique fixed‘x in U. So, if a fixed‘poinf does not
have multipliers.+1, then it persists under sufficiently
small periurbationé. Therefore, the only time that a périodic_
orbit.could be created of destroyed or cbllide with another-
pPeriodic orbit of the same period or a submultiple is when

it has a multiplier +1. AlSo, note that if a fixed.point of
'I‘E has multipliers equal to'eiQnim/n , then it 1s also a
fixed point of Tz and has multipliers +1 under DTE, where

m and n are coprime integers n31, and 0 £ m/n £ 1-2. Therefore,
when the multipliers of a fixed point are el27M¢®m/D , m/n-
bifurcations could occur. But I discuss only generic ms/n
bifurcations in generic area-preservihg maps. So, all
area-preserving maps are not considered, but a subset of all
area-preserving maps which is a set of generic area-preserving
maps is considered. an area-preserving map is called a
generic area—préserving map if each periodic paiht in the map
is either elliptic with multipliers e “™% (xiirrational
number}, hyperbolic, extremal, transition or n-bifurcation
point with multipliers e 2"*™P The definitions of extremal,
transition and n-bifurcation poiﬁt will be given below.

Let us consider generic 1/2-bifurcation of a fixed point.

a_fixed point with multipliers -1 of TE is called a transiticn
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point if there exist coordines (x,y} such that

: —X+YHEX 4e s

—
™
—
“ x
e
—
T
LY
it 1]

~y+ax® +hxy+cex+dx? +. ..

where c#C , a® + 2FP#0 ; f=d + ae + abrs2.

Note that without loss of generality, it is bossible to keep .
a fixed péint with multipliers -1 aé {(0,0) because the fTixed
point with multiplier -1 persist under sufficiently small
perturbations. So, fo; a sufficiently small € , (0,0} is

" a Pixed poiht of TE. The derivative map of'TE at (0,0) is :

-1 1

DTE(D’O) - GE -1

Note that the first order effect on the diagonal terms of
DTE(D,O} does not appear in evaluating the trace of DTE(O,O).
S0, it would appear to be necessary to calcﬁlate them to
higher order. But, to avoid this one can use the area-preser-
ving condition, as follows (Hackay,igﬁi). This problem occurs
often in analyzing generic msn-bifurcations. Let M he a linear

area~preserving map:

A B

Then,

(TrM)* = (A + D)?

4 + 4BC + (A - D})?

1l

When TrM is close to +2 or -2 ,
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TrH = £2(a + BC/2 + (A-DY* /8 + i~} . {1.2.4.1)

S50 we can use the off-diagonal terms in evaluating the trace.

Then, the trace of nre(o;o) is
Tr = -=2.- ce + O(e?*) ..

where I drop DTECD,O) in TrDTé(D,O) and hereafter I will drop
. -

1t for my conyvenience. Let c.{a*+2f)< 0 and then consgider

the case when e>0 ( if\c-(a‘+§f)> o, thén consider the case

when €<o ). Make the substitutions:

X =uwX , ¥y = Y, u* = € .
Then,
X = « X + u(¥Y + eX®) + o(u?)
Tu l vi= - v + ax® + uwicX + bXY + dX?) + e(u®)

The derivative map of Tu at (0,0) is :

. -1 19
DT =
W

we -1 N
Then, by using the trick (1.2.4.1), the trace of DTu is:
Tr = -2~cpu® = =-2-Cc€

Therefore, the fixed point is an inversion hyperbolic or an
elliptic point according as c.e€ is positive or negative,
Let us (ﬁ,?) be period-2 points of Tu' Then, they are

fixed points of T; H
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X7/ =X-2u{¥Y-aX* /2)+0(u? )

T : : '
L v?’avoou(cX + aXveeX® ree(u? )

S0, the period-2 points of Tu are:

ﬁ = t(—'zc/(a‘-n-zf))lé R ? = -acs{a*+2f) .

tn ?hq_original coofdiﬂate system (x,y), they are :

N N

X = :I:t-:;é (-2c/(a’+2f))* , ¥ = ~£ac/fa‘+2f)
Using the trick (1.2.4.1), one finds
TrDTL = 2 - Buc+O({pn*) = 2 - 8e*c .

Then, the period-2 point is elliptic or ordinary hyperbolic
according as c is Positive or negative. Therefore, in typi-
cal area-preserving mape,two types of generic 1/2-bjfurcation
occur accorﬁing as ¢ is positive or negative; These two cases

are sketched, as follows.
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In this and futu;e akétches,_aolid_line indicates elliptic,
dashed line inversion hyﬁerbolic, énd dotted line ordinary
hYperbolic; and x n denétgs that fhe'period of a bifurcated
orbif‘from a mother orbit is the period of the mother orbit
times n.

Let us consider higher order bifurcations from a fixed

22nim/n

point of TE whose multipliers are e (na3). Then,

‘there exist canonical coordinates-(I,G)f}neyer, 1970), such

that n-2
2
0’z & +2n n/m + € x(e)/n + E p; te)/n. I*
' i=1
n-=2
+ Y(e)/n.cos ne-1I 2 + f(I,0,€)},

T2 1 + 2.y{e)/n+8in ne-I'V2 + g(i,e,e),

J
8fe,0,0)=0, j =0, 1, 2,.... n-1,
apg
j : _
E—?—(6,0,0) =0, j =0, 1, 2,..., nD+1,
ap’
p = I& y X = (:!I)’é cos 0, y= ('21)’é sind . {(1.2.4.2)

This is called a normal form of 'I'E . A fixed point is called
a n—bifurcation point if x and y are not zero wheh n=3,,Y
and BtT are nbt zero when n=4, and o, 8 and Y are not Zero
when nS, where « = x(0), B= B, (0) and y=Y(0).

Let us consider the case when n=3. Make the substitution

in (1.2.4.2): I = €'r. Then, T_ becomes i
r’=r +2|E|-%-Sin36 re +o(e? ),
8= @ + 2n.1/3+ Efg + %-lel-cos 36-rﬁ + et
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AA . . ’ o .
Let us (r,8)be period-3 points of TE. Then they are fixed

points of TL ¢

r‘3)= r + 2 [el-'_r-sin:-'.e-rz +B(E‘)._

%

e = @ + €-% +|€|-v-cos3e.r? + o{e*)y .

N

Let x-Y>0 (otherwise, xy <0). Then, the period-3 points are:

. AA €
8in 30 = 0 , c08 38e¢r*® = - —..

IR

=R

' N ) "
if €> 0, then 36 = (2k+1)n, otherwise 3@ = 2kn, k=0,1,2, and

?ﬁ = x/Y . In the original system (I,0), fﬁ= iel-:f'\’é =lexsy}.

Using the trick (1.2.4.1), the trace of DT’E is i
1::-13'1*3E = 2 + 3eroa?

Therefore, the period-3 points are ordinary hyperbolic. So,

we get a 1/3-bifurcation diagram like:

Note that often one sees that the.period-3 points are born
by a tangent bifurcation which will be explained below (e.g.

see-ﬁ?.é), but this is outside the range of local analysis,
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80, a typical 1/3-bifurcation diagram is:

9

Let us consider the case when n=4. Make the substitution

in (1.2.4.2)Y 3 Izer . 'Then'TE becomnes

r =r + 2-%-e-sinﬂe-r‘+etea),

@
I

o + zn-% + %{m+ar)+ % ycosd40.r+u{e* ) .

Let (6,;) he period-4 points of TE. Then they are fixed

points of TE H
r(q’ =r + 26e-Y-81n40 r* +o(e*) ,
(4) o 2
) = @ + €(x+Br} + €:Y-C0840.r + o{e*)

A system of equations to solve to obtain fixed points of

'_I‘q. is :
€

" ~ . ) A
x + {f + Ycos4e ).r = 0 , sin 46 = 0 .
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In the original coordinate system (I,®), they are:

Fa) N
€Ex + (p+ycos4e).I = 0, gin 46 = 0

when {8j>)y), if €ep > 0, then there is no fixed point

since I< 0, which is a contradiction to the fact I»0, other-

wise
NsE
8Ly

H

N
48 = 2kn or (2kx+1)n according as the sign in I is + or -

x=0,1,2,3.

When {pl<lv}, if ey > 0, then

ol wE A <

I =' v I and 4e = (2x+1)n, otherwise
N

I =| —EE‘I and 46 = 2kmn .

The stability of periocd-4 points are given by
4 Fal
TrDTE = 2-Bexy cos4e .

Let «>0 (otherwise, ®<0). Then, When |pl>|y|, if

€Y>0, then the period-4 pecints are elliptic or orﬂinary

Fal
hyperbolic¢ according as 46 = 2kn or (2k+1})}n, otherwise vige

versa., When {pi<|Y}, if €y » 0, then the period-4

points are ordiary hyperbolic, otherwise vice versa.
Therefore, the former case (}pl>|Yl) is like % -bifurcation

case (nas), while the latter case is like 1,3 - bifurcation

case. The two cases are sketched, as follows .
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Note that like the 1,/3-bifurcation, when {pl<iY| , period
-4 pointa are often born by tangent bifurcation.

When nas, TE becomes:

,

r'=r + (-:"-3%--ain(ne)(i-:'r".‘n/2

+8( En/Q) *

e’= 8 + 2n.-m/Nn + e-% + E-%-r + G(ez) ’

where [ = €r.
The period-n points are fixgd points of T::
r =r +‘e*-27-81n(ne)(er)n/2+u(en/2) ’

(n}) =

) = 0.+ €(x+pr) + O{¢€ }

N Fal
The n-periodie¢ points(®, r) of TE are given hy a system of

equations:
N n n
sin{n®) =0 , @« + Br = 0O
In the original coordinate Bystem, this system of equations ar
. Fal Fa)
sin{né) = 0 , I = - e-o/g8
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Let x>0 (otherwise, let x<0 }. - Then, if Be>0, then there -are

Fa)
no n-periodic points because I < 0, otherwise

" x " R
I = leg I ,,ne = 2km or (2k +1)m
K = 0,1,2,...,0~1: .

Using the trick (1.2.4.15, one"fipds

: 3 .
TrDTE =2 + 2n-|e-«/3|n/2-va-cog ne .x

gt
i

So, if yYp>»0, then periodic n—poiﬁts”éfé ordinary hyperholic

Fal " R
or elliptic according as n& = 2kun or (2k+1)n, otherwise vice

versa., The m/n-bifurcation{nas)diagran is letched below.

When n=1, a fixed point is called an extremal point
if it satisfies some conditions (for detaiis, see Meyer(1970)).

Only I sketch two generic 0/1—bifurcafions, as follows.

e/ | y
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Note thit in the second case in the sxetchep; two Tixed
points which are elliptic are ordinary hyperbolic respec-
tively pop up when €>0. This is called a tangent bhifurcation.
Seéondly, following Rimmer(1974),I discuss generic
bifurcations of symmetric fixed points in reversible area-
preserving maps. The main differences hetweeniéeneric‘hifurw
'cations in area-preserving map# and those in reversible area-
preserving maps come in the case of'multipliers +1,where there
" are two typical cases. One case is the same as that in area-.

preserving maps. The other case is sketched below.

P [®or
p 1| o. K27
‘gco
.

As shown in the sketches, in this case, two further families
of unsymmetric points are produced from the mother orbit.
Except this case, all periodic orbhits produced by generic
bifurcations of a symmetric periodic orbits are also symmetric.
Finally, follwing Hackay(issz), I discuss nongeneric
anomalous bifurcations in the standard map (1.1.3.14). Various
authors(Benettin et ai, 1980,Schnidt and Bialek,1982,Greene,
Karney, and Bak and Jensen referred to by Mackay,1982) have
reported anomalous bifurcations of periocdic orbits in the

-standard map. Note that the map T:(X,¥)3(X’,¥’) studied by
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Benettin et al can be transformed into the standard map by

some coordinate change:

X =x ’ X=x’ ’ v’ = -y, ¥= -y' .

Thgir @bserv?tions in the standard map can be summarized as
foliows. The fixed point ht (0,0) and period-2 orbit at{o,n),
(n,n) have generic ms/n-bifurcations at multipliers et2nim/n ’
when n is even, but anomalous double m/n-bifurcation when n
is odd: when n is odd, two families of periodic orhits whose
periods are n times a=s long as the period of the mother orhit
are born. The multipliers of the daughters of period an even
multiple of that of the mother orbit, +1 at birth, travel.
rdund the unit ciréle, pass through each other at -1,continue
to go round the unit circle to +1,and split along the positive
'rea; line, as a parameter is varied.‘,During this change of
multipiieré,'generic or anomalous double m/n—bifurcatibns
occur} when the multipliers are et?nim/n ,» generic m/n-
bifurcations occur when m is even, but anomalous double m/n-
bifurcations when m is odd. When the multipliers go through
+1, a éeneric bifurcation occur: two further families of
periodic orbits of the same'period as that of {he_mother are
bofn. |

These anomalous bhjifurcations in the standardlmap may be
'explained as follows. The standérd map T is doubly periodic

in {x,¥y), and thus the map can he coneidered to be acting on

a torus. Furthermore, the map has an inversion symmetry:
' : /

T = U.T.U , U: x* = -x ;, y’= ~.y .
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Then, identifying points on a torus which are relatéd'by u,
‘one can consider the map to be acting on a sphefe with foﬁr
corners{see figure 1,2.4.1). The four corners are fixed
points under U. Recall that thedstandard map has two
‘reversible symffetry S, and S; (see (1.1.3.15)), S?ﬁ US,. and
TS, = U{TS,). So, on a sphere with four corners, two symmetries,
'S;Tahdvslidre reduced to one symmetry. |

If (T .¥ xeT (a torus), neZ) is an orbit, then'w'r_x,
"neZ) is also an orbit. An U-symmetric ofbit is an invariantr
orbit under U. Let x be an U-symmetric point. Then Uli;Tm#,
for some m. So, T2m-x = x, and thus an U-symmetric orbit
- must be periodic. Let p be the period. Then, without losé
'bf'genérality, OLm<p. If m is zZero, then U.x = X, x.on
a torus; So, in this ca;e, the orbit 1s‘composed°pf 3Ome
fixed points of U. This orbit is called‘a strongly symmétric
orbit (Mackay, 1982). If m is not zero, then 2m must be a
multiple of p. Since O<m<p, m=p/2, p even. Iﬂ this case,
the orbit is called a weakly symmetric orbit (Hacxay,“1932).
‘In the siandard map acting on a torus, the period-1 orbits
énd'périodAQ orbit atto,ﬁ},(n,nf are strongly symmetric orbit.
When the hultipliers of these strongly gymmetric ofbifs are
e2“im/n, if n is even, then generic m/n—bifurcations may
occur, otherwise anomalouBAdduble'm/n-bifﬁrcationa. Tﬁis is
'bECause a periodic orbit of e#en period coul& be a weakly
symmetiric orbit, on the other hand a periodic orbit of odd
‘period caninot be a weakly aymﬁetric orhit and a paiﬁ_of

unsymmetric orbits exists. Assume that all the orbits of even
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period ﬁorn'from the strongly symmetric orbits are weakly
symmetric, If x is a weakly symmetfric point of period even
p,. then x is also a fixed point of U. . HNote that T" can

bhe factorized into a product:

szQvQ ,'q:'[j-T ps2 .

If the residue R of x as a fixed point of Q is sin (n@), then

the residue R’ as a fixed point of TP is ;

R’ = 4 R(1-R)} = sin* (2nw)} .

Aséﬁme'that R increases moﬁotbnically,as'a.parameter is
1ncreaéed and generic hifurcations occurs when w=m/n. Then
“, 0 at birth, increases to +1 and decreases to 0. Note
that if there is .a beriodic orbit of period even p in Q, then
a pair of periodic orbits of period prs2 exist in Ip. Thus,

when the multipliers of x in TP are e 2n¢®/n

, 1f m is even,
then géneric m/n-bifurcations occur, otherwise double m/n-
bifurcation. So, the inversion symmetry U is responsible

for anomalous bifurcation .
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- Figure :Q:r. +'1 :

4 : A sphere wmth
::-m' .-ma.c‘e b}l Tdmhfrcafum Of‘f:ﬁ?"bsm-
X o @rus related by LI. Dashed
ines are on the bac
_come;-eal spheb-e:! = -Of e Fout”
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g8 1. 3 Quasi-Periodic orbits

In this section; I disduss quasi-heriodic orbits in
periodié area-preserving twist maps with zero net flux,
namely, those which lie on invariant circies or cantori.

In§ 1.3.1 , in periodic maps rotétioh numbers of orbits
are defineﬁ. Then, I discusé the stationary action pfinciple
for quasi;periodic orbitas whose rotation nuﬁhers are irra-
tional. Like the casé of periodic orbitas (see §1.2.2), mini-
mizing quasi-perioﬁic orbits exist in the range of twist;

The closure of a'minimizing quasi-periédic orbit may be a
circle or a cantorus. In the case of a cantorus,the projection
of the cantorus on the angle cobrdinate is the complement of
a dense set of gaps and a minimaximizing quasi—peribdic orbit
homoclinic to the cantorus lies in the gaps. ﬁhen it is an
invariant circle, all the orbits below the invariant circle
are confined, and thus there is no flux through_it.. on thé
other hand, when it is a cantorus, there is flux through the
gaps. The flux depends upon ctlosed curvés which close all

the gaps. The more important closed curves is the closed
curves through which the flux is minimum. These closed curﬁes
are those which pass through the cantorus and the mihimax-
imizing orbit, and the flux is given by the differenﬁe in the
actions beiween a minimizing orbit and the minimax orbit.
Finally, I discuss the Moser’s twist theorem whiéh guarantees
persistence of invariant circles with Bufficiehtly irrational
_rotation numbers in the integfable twist map under sufficient-

ly small and smooth perturbatibns .
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In'ﬁ 1.3.2 , I discuss when_extended chads occurs by
various.criteria.

The first is Greene’s residue criteflon which connects
the éxistence of an invariant circgle with the stabilitieé-of
nearby Birkhofi periodic orbits. Thg aecondlis Chirikovfs
reéonancg ovéflap cri{erion which connects thé existence of
an iﬁﬁariant circle with the widths of nearby resbnanceé.
The critefia of Greene and Chirikov are not mathemathically
proved, but their criteria give us practical ways to see
whether or not an invariant circle exists. In particular,
Gréene's.residue criterion.is ndw.the best p;actical criter-
1onf The third is a theorem of Mather which gives the ﬁecew
BBaAry and sufficient condition for existénce of an invariant
circle in terms of the difference in the actions of nearhy
Birkﬁoff.orbits. Finally I discuss the cone—crossihé criter-

ion for nonexistence of all the rotational invariant circles.
§ 1. 3., 1 Invariant circles and Cantori

In this subsection, I consider C1 periodic area-preser-
ving twist map T with zero net flux whose generating function

is L(x,x'):

’

(x”, p’) = T(x,P) 3 (x* + 1, p’)= T(x +1, p),

8 L/8x8x ‘<0 , L(x+1, x7+1) =L (x,x7). (1.3.1.1)

Equivalently, the map T can be represented on a cyliﬁder,

where 2nx is an angle wvariable.
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One can define rotation number v for some orbit of a
periodic map T. 'Let (X,, Do) .be a point in the plane. Then,
its orbit {txn,pn)=Tn(xo.pq), neZ} is said to have rotation

number v :

v = aim (xg-xg s ) /o -2’y ,

8~8 7300

if the limit exists and does not depend upon the way by which
(0-2') goes to infinity. Aubry(1983) and Mather{1i9s82} has shown
that every minimizing orbits have rotatién number, ‘and conver-
sely, for every v in the range of twist, there exist a mini-
mizing orbit. When a minimaximizing orbit that is the companion
of a minimizing orbit éxists, it has the same rotation number.
In the‘previoﬁs section, I discussed minimizing and minimaxi-
zing pefiodic orbits whose rotation numbers are rational. in
this =section, I diécuss minimiziﬁg and minimaximizihg guaﬂi-
periodic orbits whose rotation numbers are irrational. A quasi-
periodic orbit is dense on a circle or a Cantor set. When the
closure of a quasi-periodic orbit 15 a circle, we call it an
invariant circle and its companion, i.e. a minimaximizing orbit,>
does not exist. On the other hand, when the closure is a Cantor
set, we call it a cantorus and there exists a minimaximizing
orbit homoclinic to the cantorus . | |

There are two typesrof invariant circles. If an invariant
circle’encircles the cylinder, tben the invariant circle is
called a rotational invariant circle, otperwise a viﬁrational
invariant circle. Particularly, rotational invariant circles

are more important because they are necessary for confinement,
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by a corollary of Birkhoff’s theorem(Mackay and Percival,1985):

Theoren(Birxhoff): For the above class of maps, the
bounda;y of any open invariant set homeomorphic to the cylinder
and containing all points below some level{p=some constant)
and none ahoﬁe some other level, is the graph {{(x, T(x)):x € 8%}
of some coﬁtinuous function f: S* 3 R. Particularly, it is
a rotational invariant circle.

The;e are fhree,important corollaries of this theorem
(Hackﬁy and Percival, 1985), o

| The first is Confinement Corollary:
if the o;bita éf all points below some level p_ remain below
sone other level P, then there exist a rotational circle
between P_ and p+.

“The second is Circle Corollary:
every rétationai invariantﬁqircle is the Qraph of some con-
.tinuous -function f: S* 4 R, |
Then, every rotational ¢ircle intersects each vertical line
{x=some constant) only once.

The third is Lipschitz Corollary:;
the function f(x) in Birkhoff's theorem is Liﬁschitz.

A function f: R 9 R is8 said to be Lipachitz if the slopes:

-F " ’
S(X;,X%Xz) = IL)):%;TL”' y X3 # Xy

are unifdrnly bounded, 1i.e.

Ipt s.t. DTz S0x,x, ) <« DY .

Such_a range of slopes is called a Lipschitz cone. The domain
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of £ in Birkhbff's tﬁeoren is 8* to its covering space R, i.e.
do not take mod 1 in x. So, though f{x) is not neceasary
differentiable, it is at least Lipschitz. These theorem and
corollaries will be used in the.next subsection for the dis-
cussion of the nonexistence of all the rotational iﬁvarlaht
éircles.

Like the case of periodic orbits{(see §.1. 2. 2), there
are a couple of stationary action principles for quasi-
periodic orbits{Percival, 1979, Mather, 19882, Aubry, 1983):
one was introduced by Percival and devgloped by Mather, and
the other was introduced by Aubry.

Firastly, I diséuss the first one{Percival, 1979, Mather,
1982). Let YV be.the set 6f all increasing functions ¢;R3R
such that w(é+1)=w(e)+1 and v is the rotation number of a
quasi-periodic orbit under consideration. For ¢ e Yv, Hafher
defined an action for P

1

ae) = [ de.Lt wte), otosw) 3,

"0
where L is the generating function for a map under consider-
ation and proved existence of a minimizing ¢@{(®). Then, it
follows that the minimizing ¢(©) satisfies the'following
Euler-Lagrange equation.

Mather defined :

Vig, 0) =§—’ [Lix,x”) + L(x',x”.)]
ax

evaluated at
x = @e - v), x’= ¢(e), x=plo +v)
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Then, the minimizing ¢(6) satisfies the Euler-Lagrange

euqatipn::
Vip, ) = 0 for.all @ e R .

This gives risg to an invariant set parametrized by ©;
x = @(8), p = -L,(g(0), plo+v)),

where subhscript 1 denotes the derivative with respect to the
first argument, and x and p are dynamical variables in the map
T. It may be an invariant circle or a Cantor set according
as p{e) is continuocus or discontinucous. When ¢{(06)is discon-
tinucus, it has two determinationS'wt(e): ¢+ and ¢ are the
right continuous and the left continuos determination of
the same discontinous @{(®). In other words,
- - - +
lim ¢ (€+e)= ¢ (O8) ,
-0
€>0
and
< + -
1im ¢ (e+e)= ¢ {(0) .

€50
E<0

If wt is discontinucus at 6,, then wt is also discontinuous
for ©=8,+ h-v +k, where h and k are integers. So, the set

of discontinuity points is dense on the real line, In fact,

¢F can be written as a sum of step functions:

+ +
SIS _Eai-v (6 - 0 ,
i
T . . . L *
where at ©; ¢ 1is discontinuous, ¥ (x)= 0 for x<0, Y {xX)=1

for x>0, Y (0)=1, Y (0)}=0, and a; is the amplitude of the
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step function located at é;(Aubry, 1983}.
-Secondly, Aubry{(1983) introduced a similar stationary
action principle. Let {x;,i€Z) be an infinite sequence.

Then, the action for thia'sequénce is:

00

i=~m

If an infinite sequence (x;, ieZ} is a minimizing orbit, then
for any sequence {(6;, 1i€Z) s.t. there exists N’¢ N with 6; =0

for i>N and i<N”, the action variation:
N ' '

54 zz [L(x,+5., X, ) - Lix., x. .1}
1 1 1

vt i+l

5i+1

i=N‘-1

is positive or zero and its has a rotation number v, and
. conversely., _The closure of this minimizing_orbit may be an
invériaﬁt circle or a Cantor =set.

When the invariant set is a Cantor set, there exists a
minimaximizing quasi-periodic orbit homoclinic to the Cantor
set, i.e.. one which converges to the Cantor set as tﬁtw
{Mather, 1982, Aubry, 1983). The prpjection of a Cantor set
on the angle coordinate is the complement of a dense set of
gaps. All the gaps fall into families: if G is a gap, then
any'gap TnG(nEZ) belongs to the same family. Tﬁe quasi~-
periodic orbit homoclinic to the Cantor set is minimaximizing
in the foliowing sense{Mackey, 1982). Given a Canteor set,

choose one gap. Write xl and xr for the orbhite of the

~

endpoints of the chosen gap. For any seguence x satisfying:

1 r
. £ . £ X,
xx = xl i !
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L

the difference in actions between x and X :
o :
] L+1
Fxd= ) [LOx;, X ,50-Lexg, x;70))

i=-00

is convergent and non-~negative. Consider a set;

x, = {x "+ F(x) £ a , and xY and §r lie in the same con-
nected component) and let a in* inf{a: a is a possible value
which x_ can have). This infimum is attained. Then, any

x for which F(x) = anin is an orbit homoclinic to the orbits

of the endpoints of the chosen gap. Mather defined

_ F{v)=max{a ), . {1.3.1.2)

min

taking over all gaps.

Thig maximum is attained. Then, Mather showed that the Cantor

set lies on an invariant circle iff F{wv)=0. In other words,

it does not lie on an invariaht circle iff there is some gap

for which amin is poéitive. One can include fhe case where

p(e) is continuous. In this case, F(v)=0. So, there is an

invariant circle of irrational rotation number v iff F(v)=D.
Choose a family and one particular gap(l,, r,) of the

family. Then amiﬁ éan be interpreted as the flug through

that family of gaps in.the Cantor set when only one quasi-

periodic orbit exist between §1 and §r {Mackay et al, 1383}.

Define the stable Bef C+(x, p) and the unstable set C {(x,p)

of points (x“,p’) s.t. the distance between Tn(x',p')anﬁ T(x,p)

~ goes to Zero as n- o, respeé&ively. ‘Since the widths of the

forward and the backward image gaps, i.e. Tn(a chosen gap),

neZ, go to zero as n- *m, both endpoints of the chosen gap
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héve the same C* and ¢~. Also, the minimax quasi-periodic
orbit belongs to both sets, since it is homoclinic to the
Cantor set. Then, oné can close the forward image gaps'with
the images of ¢* and the backward image gaps with the image
of C_ and form a partial barrier with one turnatile in the
chosén gap. ' Thus, one can blame all the transport on the
chosen gap (see figure 1.3.1.1),

Let us describe C¥ and C™ by functions p(x,)and p (x.).

Then, the flux through the turnstile is:

'Co - .
dx, [ P (xe)-P (X,)]
‘1.
-co ’
‘ oL aL
= dx, [ -é-;c—o(xq. Xo )} 4 a’o(xo 2 X3 }] .
‘1,
% xt-i’ xt and xt+1 are thrge successgive points on aq orbit,
then
aL aL :
é'it‘xt-f Xg) + Ec't“‘t ¢ Xppr 10 -
Then,
Co _ +
I dx, [P (Xe)-pP (o))
1,
'C 0
= I da , A= Z_ L(xt_i, xt) .
| ==00

80, the difference in actions hetween minimizing and mini-
maximizing quasi-periodic orbit is just the flux through the
gaps of the chosen family in the Cantorus. If there is more
than one family of gaps, then the total flux through the

Cantorus is given by the sum of each flux through each family.
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Fia_uye, 1.3.1.1 ¢ Fam&on of a pal—ﬁo.l

banier with a twnstile. (Lo, k) demotes
the euclpoh'l:s of the chosen adf aﬂa{ Co

d. minimax Forn":
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Hence, the quantity(i1.3.1.2) defined by Mather corresponds to
the maximum flux among the fluxes thfough the gaps of families
when only one minimax quasi—periodic'orbit exigts between x

T
and x .

Finally, I discuss persiatence of sufficientlylirrational
invariant dircles'in integrable twist maps under suffﬁcieﬁtly
smallland smooth perturbations.

First, I Introduce sone terpinology.< v is called a dio~

phantine number (Niven, 1963) if

3 c>0, T 8.%t. | Vv - g 1 > G/qt : Vp,q € Z, g>0 .

A numbher v is said to have Liouville exponent Tt if

: v
3 c>0 8.t. | v - % | > C/qt P,q € 2, q>»0 .

lLet LET bhe the set of numbers with Liouville exponent t. Then,
”,
I_!E:_r < LET’ , for T < =T .

Niven(i1963) showed that
LET=¢ for T < 2 .

For t > 2, it is easy to show that the ﬁeasure of LEr qgoes
to one as ¢ 4.0; Give ¢ and T, ohe deletes the closed
intervals of length 2.c/q* centered at each rational p/q.
The union of all points in_these deleted intervals is the
complement of LE_ . The total measure of deleted intervals
is less than g (Qﬁfq‘)-q.. Then, for T > 2, the total

. q=1 )
measure of deleted intervals goes to Zero as ¢ 3 0. Here we
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assume that 0 £ v < &1 and it is sufficient.
There iz a theorem,so0 calléd Moser's twist theorem, which
gives some answers about queations of persistence of invariant
circles :
Theorem (Moser, 1973); All the invariant circles of
Liouville exponent T in any integrable c’ twist map persist .

under sufficiently small cr perturbations :(r > 2t-1) .

Here, an integrable twist map is:

-
-
]

I
T — vl £0. (1.3.1,3)
e + v(I) .

L]
Q
li

It may be necessary io see the meaning qf persistence in more
detail. Consider the uniform rotation of rotation number v
on a circle: T, ;:r’=r’, t’=t +r , r=v, t e st

Then, an invariant circle of ratation number v in

the perturbed map T_: (I,0) 4 (I1’,0’) has the form:

I(t) r + u{t)

i

e({t)

t + vit)

Moser showed that u{t)and v(t) are at least ct. .Then,'the
motion on the invariant circle of rotation number v is at
least Cluconjugate to uniform rotation on a circle:
3 1 - - .
a C coordinate change U:(r,t})— (I, ) ,

r =v 8.t. T¢= U*-TE-U .

An invariant circle is said to be smooth if the motion on it

T4

]
{
4




is differentiably conjugate to uniforam rotation on a clrcle.
The number of derivatigeg‘qf u and v 4epends on the Liouville
exponent v of a Diophantine rotation number and the smoothness
of the perturbed Cr-map. .For example, Herian {referred tp by
Mackay, 1982) gets invariant circles with ¥ = 2 for Cr, r>3,
which are Cr-l-conjugate to.uniforn rotation. In the analytié
case, Gallavotti{referred tp by Hackay,l1982)'showad-that
invariant circles are C“—conjugate to uniform rotation. On the
other hand ; in the éase of cantori , thé functions u and v are

discontinuous.
'8 1. 3, 2 Transition to extended chaos

Just affer the last rotational invariant circle is broken
into a cantorus, no confinement exists, and thus extended chaos
‘0Occurs. 1 dﬁscuss when extended chaos occurs hy varioﬁs eri-
teria. The first and the second criterion to be discussed are
Greene’s residue criterion and Chirikov's overlap criterion.
They connected the existence of invariant circles with sone
pfoperty of nearﬁy pericdic orbits.

Practically, it is necessary to approximate an irrational
rotation number v by an infinite sequence of rational approxi- .
mants (pn/qn}, and thus one can approximﬁte the irrational
invariant circle by a nearby periodic orbit of rotation number
pn/qn . A8 n increases , one can approx}mate it hetter.

Any ‘irrational number has a unique infinite continued

fraction rebresentation (Niven, 1963);:
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v = m_ +
o m, + 1
m2+ e
=[mo .III.1 .Il2 ."'] »
m_ e Z, m € Z+, for 1 € z*
0 i
The rational approximant r. of v is;
rn =Pn/qn=[m0 'nl Pty nl'l.] »
pn = mnpn_l + pn_2 ’ p-? =0, p-l 'l= 1,

4G = %94 * 9 9=t d, =0

These rational approximants are alternatively greater and less

than v and converge to v :

r°<r2<rq<"‘ <!‘5<r3<r1 ’
lim r = v = lim r_ .

2n+
n 2n n 1

This continued fractioﬁ expansion is the beaf apbroiimation
in the sehse that pﬁ/qn is the number which minimize |qv-pl
ovef'all rationals ps/q with the same or smaller denominator.
In a weak sense, pn /qn is the closeat number to v amcng all
the rationals with the same or smaller denominators. |

It is obge}ved that given a periodic orbit, nearby inw
variani circles and nearby longer periodic orbits are strongly
perturﬁed due to the separﬁtrix hplitting of the perturbing
periodic orbit..-The ﬁeparatfix splitting will be discussed'
.in the ne#t section. In perturbation theory, this effect
appears to be a problem of small denominators, wheré the deno-

minator is a measure of distance bhetween the pérturhing
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periodic orbit and a nearby orbit. Let the rotation number of
the perturbing periodic orbit be p/q whose continued fraction
expansion is [ n, o,

yeee, m_ 1. Then, (n, ,m

1 n ]

1 07 By P
approaches to p/q'as mh+14 0 . Thus,.the magnitude of -my;
indicates the degree of isglation from the perturbing periodic
orbit. In this sense, the most irrational number has'mi = 1
for all i : v = [(1, )® 1= (14§35 )/2. This numher is called
the Golden Mean ;ﬁ}ch has the largest possible value for C
(when the Liouville exponent t = 2) of 1,{5 (Hiven,1963, see
the previous section). So, one expects that the Golden-Mean
invariant circle may be the last invariant circle to be
destroyed as a parameter is wvaried. .

. Greene{1973) studied the Golden-Mean invariant circle in
the standard-map(l.l.s.lq). He connected the existence of a
invariant circle with the linear stability of nearby Birkhofft
orbits.

Numerically, he obseréed the three cases:

1) subcritical cases R: -+ 0, and it appears as if the Birxhoff
island chain of type~(pn, qn) converges to a smooth in-
variant circle of rotation number v,

2}y Critical case : R; are eventually bounded away from O

-and 4w, and it appears as if the Birkhoff island chain
of type- (pn » Ay ) converges to a non-smoofh invariant
circle of rotation number v ,

4

3) supercritical case: Rn 3 0 , and it appears as if there

is no invariant circle of rotation number v ,
where Rz ie. the residue defined in (1.2.1.8) of minimaximizing
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and minimizing Birkhoff orbits of type-(pn,q#)'and.pn/qn
ie the nth rational approximant of irrational rotation numher.

v in the continued fraction expansion.

He obtained the critical parameter value:

K.c = 0.9716+ .- .

Also, at this critical value,

+ -
R, =0.250... , R = - 0.255... .

R RS TS e s o et

So0,the Golden-Mean invariant circle appears to be on the edge

of disappearance when the residues of nearby minimaximizing é
Birkhoff orbits are foughly 1/4. In other words, when nearby f
minimaximizing Birkhoff orbits bhifurcate out orbits of period
' Bix times tonger than that of a mother orbit, the Golden-Héan
invariant circle appears to be about to be brokeﬁr iuat after
the cirtical value, nearby minimaximizing Birkhoff orbits of
higher periods becomes abruptly unstable,'and thuas the in¥
variant circle appears to be destroyed. Based upbn his nume-
- rical results, Greene’s residue criterion is that one could
réplace ' and it appears as if ' in the above three cases by
*which implies that’. That is, Greene's residue eriterion
assumes that invﬁriant-cirqles exiast if nearby minimaximizing
Birkhoff orbits are stable and they do not exist if nearby
minimaximizing Birkh&ff orbits are unstable,

Chirikov (1979) connected the existence of invariant
circles with the widths of 1sland.chains..ﬂisIresonance over -
lap criterioﬁ is that if two island chaihs overlap, then it

is unlikely that there is any invariant circle between them.
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He applied his criterion to the standard map. Following him,
I reproduce his results, and then one can compare his result
with Greene’s result in the standard map.

LLet us consider a Hamiltonian:
0
H= I*/2 + e€.coB2ne. z 5(t-1)

o0 A=-00 _
= I*/2 + e-z cos 2mn{e-1t) , (1.3.2.1)
o =9 0
where z B{t-1) = 1 + 2 z cos 2mat .
A =00 1=1

Here the perturbation represents a ‘kick’ per unit time.
By conatructing a surface of section at t=0 (mod 1) in the

(1, ©, t)-space, the standard map can be obtained:

In‘ . In+1 = In + 5% 8in 2ne_

T : — o v
en en+1 = en + In+1 ’
K = (2n)e .

In the Hamiltonian (1.3.2.1), only integer resonances
appear : & = Alinteger). So, let us consider the overlap
hetween integer resonances. Under a sufficiently small per-
tufbation, one can obtain the set of first approximation
resonances; Il = A& . HMNote that ail these integer resonances
are identical except a integer-shift in I. BSo, it is guffi-
cient to consider only one integer resonance, e;g. 1 = 0.

The resonant Hamiltonian governing the phase flow near the

id-resonance is:

H1 = I*/2 + € cos 2m(e-4t) . (1.3.2.2)
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Transtormation to new canon;cal variablea(p,wv} by means of

a4 generating function:

F.= =(I-1,).(wit)
yields‘
Hl‘= Pr/2 + € cos 2mw R

p = -aFsae , © = -8Fs81 .

N reduces to the pendulum Hamiltonian. So the

half-width of the L-resonance is the distance from the resonwl

‘Note that H
ance center to the separatrix. So, the half-width of a integer
resonance ias

511 = 2y€ .

On the other hand, the iesonance—spacing between nearby

integer resonances is:

Definé the stochésticity parameter:

g = B8um of half-widths of two resonances

resonance spacing between two resonances

In this case, 8 = 4J€ . When the stochasticity parameter is 1,
one can expect that there is no rotational invariant circles

due to the resonance overlap. So, the critical parameter

value is:

'= = 2 a = ..
€, 1716 or K, (2m) €, nf/q

80
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In the same approximation, the resonant Hami[tonian can
be used to calculate the residue of the resonance center. The

linearized equation about the resonance center is;

T =7,
T =0

where (3 s f) is the resonance center.

The solution for the time displacement operator H(t)satisfying'

Tit) T{0)
= M{t)
72{t) 2{0)
is:
A 1 .
cos. wt = 8in wt
M(t)= ®
A A A ’
- @ 8in wt cos wt
[aY
where & = (2n)*e = k .

In the time-1 Poincare map,the residue of the resonance center

is :

a
[}

{2-TrM(1)}/4a
= gin* 3/2

x K/4

So, at the critical value obtained by Chrikov , the residue
is :

R =« m/s16 .

This walue is larger than that obtained by Greene. The reason
can be seen by expressing the stochasticity parameter in terms

of the residue of the resonance center:
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S=%.{Eu::i- R .
At.fhg briticﬁl case, the residue of‘the resonance center
obtained by Greeneris roughly 1/4. So, 8 x 2/3 .,
In other words, Greene’s resldue criterion aayé that when
'the stochastlicity parameter is 2,3, there are no rotational
invariant circles between the two resonances. This is. called
the *two-thi.ds’ rule. On the other hand, in the Chirikxov’s

,critérion, 8=1. 980, Chirikov’s resonance coverlap criterion

gives the order of magnitude. But one can improve the critical

rvalue. taking account of highér order resonances.

Assuming € to be small, we taxe H, = I*/2 as the unpér-
turbed Hamiltonian and introduce a canonical transfofmation
(I,8)3 (T, e)such as to 'kill’ the peftﬁrbation of order €.

Let us look for a generating function of the usual form:

F(I,0)= T.e + €. (T,0,t) , {1.3.2.3)
I=T+ed ,0 =04+ €&y ,
H=H+ ¢ Qt R

where the subscript denctes the partial derivative with
respect to the subscript.
Substituting (1.3.2.3) into (1.3.2.2), we obtain the

-condition for ‘killing’ the perturbation of order € :
®

T.2 + 8, + z cos 2mi{e-at) = 0 . (1.3.2.4)
A=-00

Then, the solution & for (1.3.2.4) is:

o (6,T,t) = z sin 2n({o-4t)
r » -
: N 2n(a-T) ’

az

4
.4
it
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and the new Hamiltonjian H is i

cos 2n{e-1t).coe 2n{e-mt)
(4~T)- (m-T) :

H=T/2 + e*/2 z

1,m

In the new ccordinates(®, 1), H is 1

cos 2mn{@«1t) cos 2n(3;nt)

H=T/2+ e"/zz _ —
(4-T) « {m-T)

1,m

s8in2n[26-(4+m)t]-s8in2n(8-nt)
(0-T){m-T).2n(n-T)?

+ a(et ) . | : (1.3.2.5)

Here, it makes sense to retain the terms of order E;, since
-'the next canonical transformation to ‘'kill’the terms of order

€* also kill the terms of order €' and thus the order of the

perturbation will be EH -~ Note that the perturbation of order.

EI.

has terms resulting in half-integer resonancas:f}: r + B
for any integer r. Characteristice of a half-integer resonan-

ces are determined by the sum:

_ 1 - _nt
“"z (A-r-%) {m-r-g "
1}m=2r+1 .

Note that the sum U is independent of r. So, ali_ﬂalf-integer
resonances are identical except a integer-shift in I and thus
it is sufficient to consider only a half-integer resonanée,
e.gqg. r=0. For r=0, the resonant Hamiltonian'governing the
pPhase fiow near k-resonance 1s i

. z
H& = T*/2 - % € cos 2mn(2e-t) .

-

Applying the technique used in the case of integer resonance,
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one canl obtain the half-width of a half-integer resonance:

= N-€ .

811+ﬁ

Now, one can improve the critical parameter value, taking
account of the overlap between a integer resonance and a
hearhy half~integer resonance. In this case, the stochasti-

City parameter is:

8 = 2.(2{€ + mey .
80, the critical parameter value is:
€_ =0.03686 , k. =i.45 .

Note that the perturbation of order € in (1.3.2.5) has terms
reaulting in 3rd order resonance. Chirikov also calculated the
width of 3rd érder resonances, and taking account of the over-
lap of a half-integer resonance and a nearby 3rd order reson-

ance, he obtained more ;mproved value;

€. = 0.03423, k= 1.35 .

A necessary andlsufficient condition for existence of
an invariant circles with irrational rotation number has been
proved by Mather(referred to by Haﬁkay. 1582) . I rgstrict my
congideration to the case that given a rational p,/q, there
exist only one pair of Birkhoff periodic orbits of type-(p,q).
For example, the standard map belongs to this case. For an
irrational v, some_quantitf F{v) is defined in (1.3.1.2).

For rationatls, define F(prq) to he fhe difference in actions
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between the two minimizing and minimaximizing Birkxhoff orbhits

of type-(p,q):

Fipsq) = A nimax ~ Apin

In this case, F(ps/q) can hg interpreted as the flux{(see 8§1.2.).
Mather showed that F{v) is continuous in v at irrationals.
Thus, it follows that given a sequence of rationals P, 74, 2
v {irraticnal), there exists an invariant circle of rotation
number v iff F(p_sq ) + 0. Hence, in both the subcritical
and the critical cases, F(pn/qn)+ 0 and in the supercritical
case, F(pn/qn } converges.to some positive value. Mather also
showed that F(v) depends continuocusly on perturbations of fhe
map at irrational#. S0, just above the critical value, F{v)
is very amali. So, pratically, it is difficult to calculate
the critical parameter value by means of Mather's criterion.
Finallf. I diacuss the Cone-Crossing criterion deQeloped.
by Mackay and Percival{(1985). Let T he a C1 area~-preserving

twist map with zero net flux and DT thé tangent map of T:

(T, DT).{X,v) = (T(X), DTka(v))

X = (x, p) , v = (6x , &p) .

Then, the Lipschitz corollary described in 8 1.3.1 gives a
criterion for nonexistence of rotational invariant circles

in T. A rotational invariant circle separates the cylinder
into two invariant components. So, if ohe finds a tangent
orbit of a base orbit TF(X) for which v sometimes lies ahove_
the Lipscﬁitz cone and sometimes helow it(see figure 1.3.2.1),

then the base orbit does not lie on a rotational circle.
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This is called the cone-crossing criterion.
Let {(x; R pL ), n € Z ) and {(x; ; p;). n € Z ) be any
two different orbits on a rotational invariant circle. Then,

since the orientation is preserved on the invariant circle, one

has :

x* 1 or 1 x32 a n
n < xn xn > X for all

In other words,

X;’ —x:

4]
< x‘ —X;

< ® R

where (x,, Pp,) and (x;, p;) are any two different points on
the invariant circle and (x'}p')= T{x,p). To use this
orientation-preserving condition, it is more convenient to

change to {(x,z)coordinates:
2{x,p) = m +-T{X,p)., where n, : 8 x R 4 g

is the projection onto the first coordinate.
Then, in the new coordinates, the orientation preserving

condition is:

Zy, ~Z5
0(;":‘_—*—:(@ y X, £ X3

for points (x, , Z,) and (x, , Zz,) on a rotationa! invariant
circle. Note that this confines the 8lopes'of rotational
circles to a right angle and also this is independent of the
map. So, in the (x, z) - cbordinﬁtes, the orientation-
preservihg,condition becomes the cone—cdnditiqn ;1 the upper
cqne_cénstant is w and the lower one zero. Since the cone-

condition is obtalned, the cone-~crossing Criterion can he
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Btated explictly as follows.  If (Sxt) are the 5x-components
of a tangent orbit to an base orbit (x,),
with 8x A_:_.o. .

Ex1 >0 .,

an £ 0 for some n> 1 ,

_then the base orbit (xt} does not lie on a rotational invari-
'ant cirgle.

- For example, let us apply this criterion to a map T

[ p’ = p + £(x) !
T @ , , in (x,p) coordinates ,
| x" =x+p .
. {1.3.2.4)
[ 27 = g{z)-x
T: | , . in (x,z)coordinates .
L X =z

When f{x)= - 5% gin2nx, then the map is the standard map.
The Ex-components of a tangent orbit to a base orbit [(xt,zt),
t € Z ) gsatisfies ;

. ’ . _
th+1 =g (xt) th - th_1 .

So, choosing &x, =0 , 6x,> 0 , one gets

Bx; = g'(x,)-sx, .

So, if g“(x,) £ ©, then &%, £ O ,
and thus there are no rotational circles crossing the vertical
line x = x,. Recal; that every rotational invriant circle must

cross each vertical line. Therefore, there are no invariant

circles if
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m = min g‘{x) £ 0 .
x

In the standard map ,
m=2- |k ,

and #hua there are no invariant circles ,
ir k|l a2 2 .

One can obtain more improved reaulfﬁ, applying the cri;
terion with n>2. But one can save havipg to takxe n too large
by improving the cone condition. Note that the direction of
a tangent wvector v at X gives a slope and the derivative DT
on the tangent veétor induces an operator on slopes D at X -+
D’ at X7

X = (x,2), v = (6z , &x), D = BZ/6x ,

(T, DTX(X, v) = (X’, v, Xx7'= (x",2"),

v’= (827, 5x7) , D’= 827/ X’ .

80, in the map (1.3.2.4),
D= g’(z) - 1/D .
et some Lipschitz cone constants be D: and D° :

ne° £ Z4 =23

£ D° x X .
- Xaox, ¢ » Xy # X

+

Then D° can be obtained as follows .
+

Z, -2
— = £ D
X, x, %D, then

It
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Fd -
El—:ﬁﬁm £ D; , where
x; -X;
D, = max (g7(z) - 1/D ) = M - 1/D_ ,
' z

rd
+
M = max g“(z) .
z
Note that‘D:< D+ . 8o, if one iterates this infinite times,

then D, goes to the limit value:

D+=H-1/D+ .

Then, the upper cone constant D: is the largest root of the

above equation:

D° = M2 + /e -1 .

+*

Similarly, the lower cone constant Dl'is'the smallest root
of a equation:

D_ = min (g”(z) - 1/D_ ) .
z

S0, D° = M/2 - ]u‘/q ~1 .

Now, let us appl& the cone-crossing criterion with the
improved cone-condition. Choosing 6x = 1 , bz = Dl , one gets:
D’= g’(z) - wms .

If nin D’ is less than D: , then there are no rotational invari-

ant circles crossing the vertical line x=z, , at which D’ is
minimum. That is, if m < M -~ juﬁ-q , then there are no rota-

tional invariant circles crossing the line x = Z, and thus none
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at all. So, there are no rotational invariant circles if
Ix| > 4/3.

One can obtain more improved results, applying the cone-
crossing criterioh with higher n. Mackay and Percival(1985)
shﬁwud, applying fhe criterion with higher n, that the stan-
dard map has no rotational invariant circles if lkl 2 63/64.
This value is very close to the critical wvalue obtained by

Greene.
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g 1. 4, Stochastic layers

A integrahle twist map (1.3.1.3}, é.g. the standard map
{1.1;3.14).for k=0, has rationai invariant cifcles, the orbits
on them are periodic and the residues of the periodic orbits
are zero. But generically, the residues of all ﬁeriodic
orbits in an area-preserving twist map with zero net flux are
nonzero and thus they are isolated from péints of the sanme
period. For example, for nonzero k in the standard map, it is
observed that there exist no rational invariant circles.

For -sufficiently small kK in the standard map, there exist
a pair of stable and unstabhle periodic orhifs of all possible
rational rotation number by Poincare - Birkhoff theorem {aee
§ 1.2). At any unstable periodic point H, four invariant
curves meet(see fiqure 1.4.1). Two of these are contracting
curves H+, and the other two are dilating curres H_. The
orbits on the contracting curve converge to the unstable point
H under the forward iterations of the map, while the orbits
on the dilating curve converge to H under the backward itera-
tions of the map.

The only way to get a rational invariant circle with no
periodic points of residué zZero is by joining a dilating
curve of an unstable periodiec point to a contracting curve of
a nearby unstable peribdic point smocthly, i.e. saddle cdn-
nection, an& then there exists a separatrix(sge figure 1.4.2).
But generically, there are no saddle connections (Rocbinson,

1970). They can be broken by arbitrarily small perturbations
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giving transeverse intersection of the dilating curve and the
contracting curve (see fTigure 1.4.3)..This phenomenon is
called the separatrix splitting(Arnold,1978). The 1ntersect16n
points aré called homoclinic points, sin&e the orbits of
homoclinic points converge to the unstable periodic orbit
under both the forward and the backward ite;ations.of tﬁe maﬁ.
Sq,homoclinic orbite have the same rotation number as that of
the unstable orbii. But they are not periodic.Like the case
of a periodic and'a duasi-periodic orhit; there are two tyﬁea
of homoclinic orbits. One is a minimizing homoclinic orbit
and the other a minimaximizing orbit{Mackay et al 1984). The
limit of minimizing orbits of rotation number v, as ¥ 3 m/n
monotonically froﬁ above or below, gives a minimizing
homoclinic ofbit of rotation nunhef msn. In the same way that
there is a minimax point between the two endpoints of a gap in
a'mininiziné Cantor set(see §1i. 3. 1), there is a minimax
homoclinic point between any two minimizing homoclinic point.
Like fhe case of a cantorus(see 8 1.3.1),the difference in the
actions between a miniﬁizing homoclinic orbit anﬁ a minimaxi-
mizing homoclinic orbit can be interpreted as the flux through
a broken separatrix {(see figure 1.4.4) .

If a separtrix exist likxe the case of a pendulum ,then
the separatrix Beparates the_rotation region from'the.vibra-
tion region completely. But, due to a separatrix splitting,
generically there exists a.flux through the broken séparatrix.
In other words, points near the broken separatrix wander.from

the rotation region to the vibration region and vice versa.
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Thus , a stochastic layer is formed near the broken separatrix
(Chirikov, 1979).

Following Chirikov(1979), let us estimate the size of a
stochastic layer ﬁrOund thé broken separatrix. - He considered
a pendulum as a model of nonlinear reaonance, under a periodic

parametric perturbation described by a Hamiltonian:

CH(P, @, 1) = Ho(p, @) + €:Vip,T), (1.4.1)
Ho = p*/2 - w,%cosp , V = w;‘ cosw-ﬁost R
T = Nt + T, , where @ and 1, are the perturbation
ffequencyrand the initial phase, respectively. By constructing
a surface of section at ¢ = 0 , he obtained the sepafatrix
map describing the motion of aystem(i1.4.1) near the separatrix

when 1 /w, is very large. The separatrix map is :

’, -
w=w-L[ 81n T, »

, , (1.4,.2)
To= Xo + X dn (3271w |) ’

¢ = anext e~ M2 , A =0 /9 .

Here, w ia the quantity to indicate the degree of relative

deviation of H, from the unperturbed separatrix energy u;‘

-

W = (Hg=-wot Yrw,® .

The fixed points of the séparatrix map{1.4.2) (3 ,3) are:
Fal Fal
iwl = 32.exp(-2nn/x) , 6 =0ornn .

The residues defined in (1.2.1.8) of these fixed pointa are:

Fal Fal
R = E«AecoB80 /(4.-W)
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Note that the residue is dependent oh the fixed point (3,3).
Also, recall that in the q;andard map, al[ the Tixed points
have thé same residues, .All the fixed points in the region
where jwj < G-A/4 are unstahle, while ail the fixéd points
on the lihe ©®© = 0 are unstable, those on the ling e=n stable
when G > tsA/H, and vice-veréa when G < - L-A/4 (Bee Tigure
1.4.5}) 80, since in the region where |w| <C.x/4 ail the
. fixed points are unstable, one can expect that there are no
invariant cirﬁles in the region ﬁy Greene'é residue criterion
(see §1.3.2). Therefore, ohe can expect-that in the region,
the motion may he stochastic.

For x << 1, the change of w is small, and thus orie can
linearize the separatrix map in w about a fixed pointtc, 3}

to get a new map:

1’1 + K sine ,

‘=0 + 1’ (1.4.3)
. N .
K==z, I= -~ % {w - w) , e = T, .

w w

Note that the above map is just the standard map and the
parameter is dependent on the fixed pointa. Recall that in
the standard map, extended chaos occurs when |K| ; 1 (see

'§ 1.3,.2). So,.in the region where ]wl < AT , there_gre no
invariant circles and near the fixed points for which |G¢=A-c,
there exist the ﬁoundary invariant circles (see figure 1.4.5),

Therefore, the half-width of the atochas?ic layer is :

WB = A-I;

dn.c.a%e” M2
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It is worth noting that for grhitrarily sxnall € , v is non-
Zero.

' Roughly speaking, the stochastic layer conaists of the
two parts. One part is the central one_( Iw]l < Bea/4) in
which there are no islands and the other part{g.i/4 <|w| <w, )
is the peripheral one in which islanda‘are imbedded, but there
éxist no rotational invariant circleas., In this way, the struc-
‘ture of the stochastic layer is intricate: it has the divided
space in whidh'regﬁlar and stochastic components coxeist.

The diffusion is a distinctive raqdon process. So if one
considers the motion in the stochastic layer-as‘béing'similar
to a random one, a diffusion in w must occur.

L.et us see the statistical properties of the motion in
the atandard map (1.4.3) when K| > 1. Then, one can see the
statistical properties of the motion near a fixed point of
the aeparatfix map (1.4.2) since the standard map describes the
behavior of motion near a fixed point of the separatrix map.

The force correlation in the standard map is defined by

CR(1)= < a-a, L Pp 0 (1.4.4)

wnere a, = It+1 - It = K-n:.net and the averaging is performed

over an ergodic component of the motion R. Also,the diffusion

coefficient is defined by :
D, = 1lim D_(t)  , _ ) {1.4.5)
R - tom R
Then, the diffusion coefficient can be expréssed in terms



of the force correlation:
' ©

1 -
Dy = 5 Co(0) + Z Cp i) - BRGEEY

i=1
For large K, the correlation decays fairly fast and so it is

sufficient to consider only short=term correlations. Then

the diffusion coefficient ist
- ' a - 2 a
Dp = K*/4e[1-2 T K + 2T (R)-23, (x;+212 (K)
+ oK% )3 (1.4.7)
whére'Jn(x) is the Bessel function,

|'2 : : . ; :
Jn(x) * | -coO8 [x~{n + 1,/2).0/2] for large x,

Kl
- a = = m——
CR{0) = Ki/4, Cpl1) =0, Cp(2) = -3 7, ,
_ R . R* a i ]
CR(3) =3 (J: - Jj). CR(Q) = = (32 +o0(K ™))

This result.waa first obtained by Rechester and White(13980}
and later by Cary et al{1981) in a different way. Since the
diffusion coefficient exists, one can see that there is an
intrinsic stochasticity‘in the standard map for large K.

Buf the htochastic mofion is not purely random due to the
short-term correlations. The result{(1.4.7) agrees well to
the result of a numerical simulation for K> 4 (Chirikov, 1973).
But, in the parénefer interval where an accelerator mode exist,
one cannot neglect the effect of the accelerating island
(Karney, 1983). In this camse, the diffusion coefficient
becomes very large, For 1< K < 4, by a numerical simulation,
Chirikov(1979) obtained :

D(K) ~ (R - 1)2"°% | . (1.4.8)
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Also, Dana and Fishman(1935)vobtained :
D(K) ~ (K ~ 1)? _— {1.4.9)

for 1 < XK < 2.5 ; by a nungrical gimulation.

Now, let us see the statistical behavior of the motion
in the separatrix map. The diffusion in w becbmea inhomo-
geneoué since D(K) in the standard map turns into D(x-:/c)
by (1.4.3). Roughly speaking, there are two distinctive

regione in the stochastic layer:

1} near the layer center, a fast diffusion takes place and
the correlation may be neglected.

2} near the layer horder, a slow diffusion takes placé,
Diw) ~ (W slwl - 1)2°%% (1.4.10)
Finally, I would like to mention long-time correla-
tions of stochastic orbits in the stochastic layer.
Chirixov and Shepelyansky{(1984) followed a single trajectory
while it croageé succeasiﬁely the line w = 0 in the separétrix
map. HNote that for w >0, the trajectory is in the rotation
region and for w <0, it is in the wvibration region. The motion
time interval between two successive crossings waé recorded.
This time is called a trapping time or a recurrence time.
Define P(t) as the survival probability for a recurrence to
occur later than T. The as&mptotic‘behavior of P(t) as 7 9 m
is related to fhe atruqture of the layer border. For various

A, they obtained :
P{T) ~ TR {1.4.11)
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Note that as A varies, the boundary is albo'changéd. So,
thé surv;val‘prohabilify distribution decays asymptotically
as a power law , which is roughly independent of boundary
circles , and thus the motion in the stochastic layer

exhibits long-time correlationsa.
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CHAPTER 2. Critical behavior 1in area-preserving maps
§ 2.1 Introduction

The phase space of a generic area-preserving map is
devided into regqular components and stochastié components
periodic, quasi-periodic, and stochastic orbits coexiat
and interact .

Let us see the roles of the above three kxinds of orbits
in the DeVogelaere map (1.1.3.5). Figure 2.;.1 is the phaﬁe
. flow near the main fixed point of the DeVogelaere map when
the parameter p is 0.24. Near the main fixed point, vibra-
tional invariant circles and a daughter island of rotation
number 1,5 are visible. In fact, since the residue defined in
(1.2.1.8) of the main fixed point is 0.38, m/n-bifurcations
where m/n<0.2114.-- have already occurred (see § 1.2.4 ). So,
in fact, many islands exist. But only one has the appropriate
scale to bhe visible in thezfigure. Also many unstable orbits
exist. Near these unstable periodic orbits, stochasticllayers
afe formed due to the separatrix-splitting (see 8§ 1.4 ) .

Fiéure 2.1.2 and figure 2.1.3 are the enlarged figure of
the phase flow near an unétable periodic peint of rotation
number 1/5. Notice that the dark part of the picture ia a
single orbit. The orbit are very sensitive to initial conditions
and appears to be area-filling . So, it is called an apparently
area—fllliﬁg stochastic orbit.

Lookiﬁg at the picture in detail, there exist the bound-

!

ary circles of the stochastic layér and near the boundary
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circles, islands exist in the stochamtic layer. The rotation
number of a boundary circle on the left of the figure is
{0,5,12,1,1,1,1,1,..+] in the continued fraction representa-
tion. Two large islanda near the.boundary circle are visible.
The rbtation number of the left one outaide the stochastic
layer is 12,61 and that of the right one inside the stochastic
layer is 13,/66. Alao, in the étochastic layer', two smallér
islands are visible and their rotation number are 14,71 and
15,76, respectively. | | |
If one follow the periodic orbits of rotation number
'{0,5,m), then one can approach the broken separatrix as m—jm.
Thus, one'can ohtéin the reaidﬁes of the periodic orbits and
expect the phase flow near the periodic orbhits.
The residues of the ‘periodic orbit of rotation number
12761 and 13,66 are roughly 0.20 and 0. 28, réspectiveiy.
. Note that 12r/61 and 13,66 are [0,5,12] and {0,5,13], respec-
tively. As m increases further, the residues of the periodic
orbits inbrease. So, the size of that island gets smaller as
m increases, and all periodic orbits are pnstahle when m>16.
S0, in the central part of the stochastic layer , many
unstable periodic orbits are embedded , and thus stochastic
orbits ére scattered by them . Thereforé, a stochastic orbit
has a short-=term correlation in this region .
| By Greene's residue criterion ( see 8 1.3.2 )}, all the
invariant circles whose rotation numbers are between 13/66
an& 1/5 are hroken} and thus a stochastic orbit wanders about
inside thie stochastic layer hounded by boundary invariqnt]

circles . But the stocharmtic orbit can not penetrate the bound-
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ary circles . Therefore, invariant circles play the role of -
a complete barrier to transport of stochastic ofbifs 8

| Tpe dark pert of flgure 2;1.2 and figufe 2.1.3 are form-~
ed froﬁ an orbit of a poinf (-0.275,0). The times of-the map

iteration are 2x105

and i.5x105, respectively: In.the f;gure
2.1.2 ’ the orbit has approachee a region near the island of
rotation number 15/76, and it has been trapped for a leng
time near islands of rotation number 14)71 and 13,65 , as
shown in the figere 2.1;3 . So, the reg;eﬁ near islands of
rotation number 14,71 and 13,65 has become darker in the
figure. In fact, éhannon and Lebowitz (1980) sﬁowed, gquanti-
tatively, that the stochastic orhits have a long-time corre-
lation in this steqhastic layer. Shepelyansky and Chirikdv
{1984) also ehowed the long-time correlatione of‘stochastic
orbits inside the stochastic layer in the separatrix map

( see § 1.4-);

Also, notice that the main fixed peint has fhe outmost
boundary circle 1n‘the figufe 2.1.1. The rotation number Vb
of the boundary circle is {0,5,%,2,1,3,1,-..-1 in the conti-
nued fractien representation. So, all the inverient circles

whose rotation numbers are less than v,_ are broken.‘Hence.

b
it one iteratee the map with an appropriate imitial point.
outside the boundary circle, then the orbit of the point
wandefs about outside that houndafy circle, Semetime, the orbit
approaches the region near the boundary circle

chastic orbit spends much time. This is because small islands

, where the sto-

exist in the region as shown in the figure 2.1.1. That is, the
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orbit hdas a long-time corfelatinn in the region. In fact,
Karney{1983) showed ,quantitatively, a long-time correlation of
étochaatic orbits near the outmost boundary circlé when the
parameter p in (1.1.3.5) is 0.3675.. .

We have niot yet arrived at the full structure of ihe.”
Phase flow. In fact, the daughter islands haqg_tggiilqyn.ﬁi:
brational invariant circles and island.chaihs around them ,.
and so bn. So, each.island is a microcosm éf the whole. In
other worda,'e;ch island has the infinitely ngstéd structure
{Arncld and Avez,1968).

In thg way stated above, périodic, quasi~periodic and
Btochastic orbits coexist and play fheir own rdlés in the
pPhase space : unstable periodic orbits play the role of
‘scatterer' of stochastié'orbits like the ﬁina in a pin ball
game, islands play the role of *trap’ of stochastic orbits ,
and invariant circles play the role of ’dam’.

In this thesis , we study thé critical phénoména related
to periodic and quasi-periodic orbits .

InS§ 2.2 , we describe generic bifurcations ih'revers-
ible area-preserving maps in furthur détaila thaﬁ in g 1.2.4.
Particularly, wé describe the relations between symmetric
periodic orbits and_aymmetfy half-1ines iﬂ deféilé . This
relation play a very important role in understanding the cri-
tical phenﬁmena. The role is described in 8 2.3 and § 2.5 .

The first phenoﬁenon we studied is the infiniiely
nested structure of.iﬁlands which play the rolé of ‘trap’.

In 8 2.3 , We show that at a certain parameter value, the
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so-called accumulation point, island chaine of all classes of
a particular bifurcation exigt and they hév; a self-similar
nested structure géymptotically. We found that their limiting
self-sinilar behaviors appear to be univerqal and calculated
‘scaling factors for 1/n-bifurcation sequence, with.n=3 to 6.
We have also observed that the pattern of periodic orbits
repeats itself asymptotically from one bifurcation to the next
for even n and to every other for odd n. In fact, even more
asymptotically self-similar behavior exists near the accumula-
tion point. When we rescale not only dynamical variables but
also the parameter with appropriate rescaling factors, the
pattern of periodic orbits alsb exhibits the limiting self-sim-
ilar hehavior.

Recently, Meiss(1986) also studied the infinitely nested
island-structure for higher multifurcgations than those studied
by us. However, he did not obtain scaling factors of dfnamic
variables separately. Instead, he obta;ned the area-scaling
factor directly by calculating Mather’s action difference
between the minimaximizing and thg minimizing periodic orbit
df each class. Of course, it is sufficient to obtain only.the
area-scaling factor if one is concerned about the'transport
of stochaatic orbits near islands, since here the transport is
the transpbrt of the_phaae area. Actually, Heigs and O0tt(1985)
construcfed a gelf-similar Markov frge model ﬁhich descrihes
the motion of stochastic orbits near islands,in which the
transition probabilities are directly rgl%téd to the self-sim-

ilar scaling behavior of the infinitely nested structure of
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T

islandé and critical invariant circles. Thus, they obtained
an algebraically decaying recurrence-time distribution of
stoﬁhastic.orbits near islands. In this way, the long-time
behavior of a stochastic orbit near islands tan be described
only if one knows the-self- similar scaliné-behavior of the
‘infinitely nested structure 6f islands and cfitical invariant
circles.

fn 8 2.4, wé also>study these asympto?ically self-similar '
ialénd structufes by a simple apbroximate renormalization .
method.

The.aelf-similarity of island structures is an asymptotic
long-time behavior of a map T. Therefore , the short timescale
behavior can be removed~by considering a higher iterate Tn of
the map. As a next stép; an appropriate coordinate change ’
t0o smaller spatial scales makes it lodk almost the same as T.
The operation of iterating n times and rescaling is a renor-
malization. Under the renormalization, T converges to a fixXed
point of the renormalization. This fixed point is called the
universal map of i/n-bifurcation. Thus, T has asymptotically
self-similar benavidr on longer timescales and smaller
apaceséalea. Since it is the same for all maps converging to
the universal map, thehbehAVior 1 ¥:] haid to be universal.

The gpproﬁimate renormalization method uéed in this‘
thesié may he célled the method of quadratic appfoximant?.
Since the self-aimilarity is an asymptotical;y smaller
spacescale behavior, it may be sufficient to retain upto

quadratic terms in the Taylior expansion of the iterated maps.
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So,the quadratic approximant is formed by keeping the terme
to the second order in the‘Taylor expansion of ", Compari-
sion of successive approximants gives theiéccumulation point
p*,the bifurcation ratio &, the rescaling factors « and g ;

and the universal residue value. By looking at the recurrence

' ] A4+l
relation between Tn and Tn with large & , one can nmake

better.approximations. Furthermore, we also bhtain the apprbxi4
mate universal nap T* and thua show approximately that the
limiting self-similar behavior is universal.

The second phenomenon we_studied is. the break-up of
invariant circles which play the role of ‘dam’ under a rough
perturbation

Consider_a boundary circle whose rotation numhber vb'ia
£0,5,12,1,1,1,1,1,-Q-] in the fiqure 2.1.2 . Then, if one
follows perioéic orbits of rotation number rn which is Fhe

nth rational approximant of v then one can approach the

h'
boundary circle and study the behaviors of phase flow near 1it.
For example, islands of rotation number 12/61 and 13/66 in the
figure 2.1.2 are those of rotation numhers correspondin§ to
rational appfoximants r2 and r3, respectively. The residues of
.periodic orbits of rotation number corresponding to the ration-

al approximants of v, are roughly 1,4, asymptotically. This:

b
implies the self-similarity of the infinitely nested-stfucture
" near the boundary dircle locally since one can see the property
of linearized flow in terms of residues. In fact, Shenker and

Kadanoff(1982) and Mackay{(1982) showed that the boundary circle

has an infinitely nested self-similar structure in an analytic
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-map. When the map parameter i8 increased slightly, periodic
orbits of rotation numher corresponding to higher rational ap-
- proximants hecome unstahle and residues of periodic orbits of
rotation number corresponding to lower rationél approximants
lie roughly between 1,4 and 1, In such a situation, the most
impartant thing to happen is that the‘boundary cirhle which
has separated islands is broken, and thu=s the-width.of the
gtochastic layer has widened. Therefore , it is important to
study the critical invariant circlea;

In the final section{(§ 2.5), we study the persistence of
; noble invariant circle in an integrable map under a Cg—per-
turbation. |

First of all,it is worth ﬁhile to_notice that the per-
sistence of an invariant circle depends on the quality and
strength of perturbation and the robustness of the invariant
circle . For example, intuitively, rough syastems are likely to
be chaotic (Wightman, 1981). There is a mathematical theorem
called Moser’s twist theﬁrem(1973) which gives some answers
about the queat;qn of peragistence of invariant circles under
perturbation. The theorem says that a suffieiently robust
invariant circle peraists under sufficiently small. and smooth
perturbation. Here, the sufficient smoothness is now C' (r>3).
Then, the natural question ia ﬁhether or not invariant.circlea
persist under Cr( r £ 3 )5perturbatiqn. 80, in this thesis, we
study a C*-map .

Following Greene'’s residue criterion aﬁd.Hather's cri-

terion, we show numerically that a noble invariant circle
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persists below a critical parameter value in a map of class
C*. Therefore, the invariant circlée plays the role of complete
barrier to transport of stochastic orhits helow the critical
parameter value. Furthermore, we also obaerved that the crit-
ical behavior of that invariant circle seems to be the same

as‘that in analytic maps within numerical accuracy. So, they

seems to be in the same universal class
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s 2.2 Generic bifurcations in reversible

area-preserving twist maps

In this thesis, we consider the DeVogelaere quadratic
map since the map is represented in terms of symmetry coor-

dinates {(se€ (1.1.3.4)). The map is:

x x" = -y + £ _(x)
T — P

x - P_(x’ '
p( )

H

(2.2.1)

@
[

where fp(x)= PX (1-p)x* .

The map is an area-preserving map with unit Jacobian
(det(DT)= 1), Here DT is the Jacobian matrix which is the
two by two matrix of partial derivatives of x’ and y” with
respect to x and y.

The stability of a periodic orbi? of period n is deter-
mined by the Jacobian matrix M of T: about the orbit ( see

§ 1.2,.1). The residue R of the periodic orbhit is;
R = (2-TrM)/4

When R<0O , the orbit is hyperbdlic, when 0<R<1 it is elliptic,
and when R>1 it is hyperbolic with reflection; For an
~elliptic orbit the residue can be represented as R=sin® (mv),
since the eigenvalues A of M are on the unit circle (N =
*i2nv . <
e }. Here v is the central rotation frequency about a
point on the orbit.

The map has the elliptic fixed point at the origin when

-1<p<i. The residue of the fixed point is : R=(1-p)/2.
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hence the central frequency v, about the fixed point is given

by an equation

P = €o8 2NV, ’

- 2n
iand the eigenvalues A of M are e ¥t2MVo

It Ak¢1 fof x=1,2,.[.. q(déﬂ), then there exists a canonical

'transformation(x,yja(e,I) such that
I = %(x‘+y‘), e = tan™® y/x

and the transformation takes the map (2.2.1) into a map:

1’ (g+1)/2

I+ o(I Y

: - (2.2.3)
8’ = 8 + o) + o(r'91172,

[]

where o(l}= 2mv, + ull + e+ uB-IB ’

~

B = q/2 ~ 1 (Arnold, 1978}

Near the elliptic fixed point, typically, the map is a
twist map (Mackay, 1982), since it satisfies .the twist

condition:

a1 # 0 for any o . | {(2.2.4)

‘S0, near the elliptic fixed point, the map has typically

. rotation shear.

The rotation number of an orbit in a twist map is defined

~as the average rotation rate:
v = lin en/(2nn)

if the limit exista.
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The range of twist defines the possible range of rotation
numbers:

0 < v < Vv .
For exémple,.in the figure 2.1.1, the possible range of rota-
tion number i8 § 0 < v < 0.2114¢.., |

& twist map can always be obtained from a-generating

function L(e,e”) such that

I = - aL(e,e’) ~ ae ,

(2.2.5)
Fd -

1’= aL(e,e’) , se”’ ,
since it satisfies the twist condition (2.2.4).
It e, o’ and 7 are three successive points of © on an orbit,

then

8 (L{e,8’) + L{e”’,8’’)1 = 0 (2.2.6)
ael »

For integers r and 8 with r+1 < s, let (et, r<£t<£s) be an
arbitrary sequence of real values of © subject to fixed
initial er and final et‘ Then, from (2.2.4), this seqguence

gives an orbit-segment if and only if the action;

51

A =z Lie e, )
t=r

is stationary with respect to arbitrary variations of inter-
mediate point et . 8o, an infinite sequence gives an orbit

if and only if every finite segment has stationary action.
Particularly, a periodic orbit can be obtained as follows.

Let us consider a periodic sequence of t}pe-(p.q);(ea, 61""’
e = 6 _+ Qﬁp}. Then, the action of the periodic aequence is:

q 0
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q-1
Acce,)) =z Lie,e ) . (2.2.7)
=0

A periodic sequence of type(p,q) gives an periodic orbit of
type(p,q) if and only if its action is stationary with respect

+ 2np.

to variations keeping aq = Bo

By the Poincare-Birxhoff theorem(see § 1.2.2), in area-
Preservin§ twist maps, there exist at least a pair of periodic
brh;ts in'eadh ratiopal v in the range of twist. For the
DeVogeléere map, one pair of periodic orbits exist ,
€.9. ,. in the figqure 2.1.1 , a pair of periodic orbits of
type(1,5) . One of these orbits minimizes the action (2.2.5)
and the othér is a minimaximizing periodic orbits(see § 1.2.2).
The minimizing orbit has.a negative residue and the minimaxi-
mizing one a positive reaidue (see § 1.2.2.). Also, the
difference in the actions befween the minimizing and minima-
'ximizing orbits can be interpreted as the area transpor;ed
between the minimizing and minlmaximﬁzing orbits pef iteration
of the map (see § 1.2.2.). So, computing the differenée in the
actions, one can obtain the area scaling factor {(Meiss, 1986).

Finally, the maﬁ is reversible since it can bé,factored
into the producf (Tp-S)-S of two orlentation-rever§ing involu-

tione:

x® x? = x
= H — o
o s . R
Yy Yy = -¥
’ {2.2.8)
x x = ¥+ P _(x)
T_8: — , P |
'
Y Yy =X - fp(x ) s

118



S* = I(identity) = (Tp-S)',

det(D9)= -1 = det (D(TPS)) N

It ¢ (x;, ¥;)» i€ Z ) is an orbit of T, , then { S(x;,y;),
ie Z ') is an orbit of T; which is the inverse map of Tp ,
where T; = S-Tps. A symmetric orbit which is its own time
reversal is an invariant set under S. |

"Two symmetry lines formed from the pointa invariant
under S and Tp-S are the line'y=0 and the line y = x-fp(x).
Then, a symmetric periodic orbit must have-two symmetric
points on the symmetry lines(see §1.2.3): a periodic orbit
of even pericd has two points on one symmetry line and none
on the other, and a periodic orbit of odd pefiod has one on
each symmetry. line. It may be helpful to see the figures
2.2.1, 2.2.2, 2.2.3. Two symmetry lines are shown in the
pictures. They intersect at the elliptic fixed ﬁoint.‘ Since
we are interested in the phase flow near the elliptic fixed
point, we divide the two symmetry lines into four half-lines
which meet at the elliptic fixed point. These half-lines
point away from the fixed point and are assigned an orienta-
tion as follows. Positive orientation,denoted by the suhacripf
", correspond; to pointing in the positive x direction.
Similarly negative orientation is denoted by the subscript
w.", Then, one can easily determine the rule for which points
of the symmeiric orbits of rotatiqn numher ps/q lie on which
half-lines. This depends on whether p andsor q are even or odag,
as shown in the table 2.2.1. An obserbation, but not mathe-

mathically proved, is that all the minimaximizing orbits tend
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to have a point on one of the four half-lines denoted by Ei

(see 6 1.2.3). This half-line E, is called the dominant half-

line. For the nap Tp » the dominant half-line is S+. We denote

1

o * and the two hyperbolic lines

the second elliptic line by E
. by H; aﬁd H; . Figures 2.2.1, 2.2.2, and 2.2.3 correspond to
each case shown in the table 2.2.1. These relations between
symmetfic'periodic orbits and symmetry half-lines can be used
usefully in locating symmetric orbits : a symmetric periodic
ﬁoint can be evaluated hy going only halfwéy rbund the orbit
{see § 1.2.3). 7

In fact, periodic ofhits of type(p,q) have been born
from the elliptic fixed point of T by generic bifurcations as
the map—paraﬁeter P is varied (see 8 1.2.4). In this section,
we explain generic bifurcations with figures.

As stated ahove, for an elliptic orbit, the residue can
he represented as R = sin® (nv). A generic msn-bifurcation
occﬁrs when v is ms/n, where m and n are coprime inteéera,
nxl and 0£Z m/n £1/2 (see § 1.2.4).

As an example, let us consider generic bifurcations of
the elliptic fixed point of the Devogelaere map, when p>1.
The residue of the elliptic fixed point is: R= (1-#)/2, and
the central frequency v, about the fixed point ias given by
an equation; p=cos 2nv,. As explained in § 1.2.4;-when vV -
is m/n(nas),a pair of stable and unstable orbits of rotation
number m/n stable and unstable orbits of rofatlon numbér
m/n are born. In the figure 2.2.1, a pair of stable and

‘unstable orbits of rotation number 1,6 bhorn ¥rom the fixed
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point are visible and a pair of stahle dnd unstable orbits

of rotation number 1,5 and 2/5 are aiso visible in the

figures 2.2.2 and 2.2.3.:réspecfiﬁelf. When Vo is 1/4, two
iypes of generic 1/4-bifurcation exist (see 51.2.45. The

ist tyﬁe is shown in the figure 2.2.4. At the resonance
value, a pair of stable and unstable orbits of rotation
number 1,4 are born. This case correspond to the case of a
generic m/n(nas) bifurcation. The 2nd type is shown in the
figures 5.2.5 and 2.2;6. Tﬁe figures shows a generic 1/4-
bifurcation from the elliptic orbit of rotation number 1/4
born from the elliptic fixed point by a generic bifurcation

of the 1st type. Let v be the-central frequency about a point -
of the elliptic orﬁit of rotation number 1/4. Then, below

the resonance.value (V<i/4), a pair of stable ahd unstable
orbits of rotation number 1/16 pop up. This is called a
tangent bifurcation. As v approaches the resonance value 1/&.
the unsfhble‘orbit approaches the-elliptic orbit of rotation
number 1/4 (see figure 2.2.5). When v is 1/4, the unstable
orﬁit is absorbed by the elliptic orbit and as v increases
further, the unstable orbit is emitted(see figure 2.2.6).

Note that the elliptic orbit becomes unstable at the resonance
value sincé it absorbs the unstable orbit. As explained in

1 1.2.4, a generic 1/3—b1furqation corresponds to the case of
a generic 1/4-bifurcation of the 2nd type. In the figures
2,2.7, 2.2.8, 2.2.9, a generic 1/3-bifurcation from the ellip-
tic fixeq point i=s shﬁwn. Also in this case, the elliptic fixeq
point loses its stability. Finally, as v, ﬁasses 1/2, thg
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elliptic fixed point turns to-the hyperbolic point with re-
flection and a neﬁ elliptic orbit of doubled period appear {see
fiﬁures 2.2.10‘and 2.§.11). |

All the daughteér orbits born from the symmetric mother
fixed point by a generic mn/n{0< m/n £1/2)—bifqrcation,'qfe
symmetric oribts {(see § 1.2.4) . However, as exﬁlaihed in
8 1.2.#. in é case of generic o/1-bifurcation , daughfer
orbitas are unsymmetrié. The Devogelaere map has th;s example.
BEut we do not consxder the case in this thesis .

We call the mother elliptic.fixed point the. ¢lass~zero
orbif(Heisa, 1886). So, the daughterlbrbits are class-1
.orbifs and encircle the class-zero orbit. Furthermore, each
class ohé elliptic orbit becomes a mother orbit of class two
orbits encircling the clésa one orbit, and so on. In this.way,
there eiists.an infinitely nested island structure, i.e.
islands around islands of all classes.

As stated above, for class one orbits, there exist a rule
for which pbihta of a class one orbit lie on which half-lines.
Similarly, for higher class orbit, there exists a rule depend-
iné on the mother orbit. Let E: and Eg be two elliptic

half-lines for class n. Then, since the daughterwclhsa-(n+1)

orbits encircle the mother orbit, the four half-lines ‘E?+1.
E2+1 ’ HT+1' and Hg+1 for class-{(n+1) are obtained from E?

and En by dividing each into two half—lines which meet at
the mother point. Like the case of class 1, each halft lxne
points away from the mother points and is assxgned an orienta-~

tion as follows. Orxentatxon of a half-line is designated
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poistive if the half line points in the same direction as
that of the mother line. For example, E? is divided iﬁto
two half-~1lines E?+ and E?_ . It may be helpfui to see the
figure 2.2.12. Then, one can easily determine the rule for
which points of the class {(n+i)orbita lie on which half-lines.
This rule is #hown in the table 2;2.2. This rule is not yet
provéd mathemathically. Note that higher class orbits also
have the dominant symmetry line. - 8o, all .elliptic class-
(n+1) orbit have one.point on that dominant aymmetry_E2+ H
E’l“'l = E;_ . We call the elliptic point on the dominant
half-line the dominant elliptic point, and the elliptic
point on one of the remaining three subdominant half-lines
is called the subd&miﬁant elliptic point. Let v be_the
central frequéncy_about a point of an elliptic orbit of
class n. A generic p/q-bifurcatidn occurs when v is p-sq,
where p and ﬁ are coprime integers, a2l and‘oﬁp/q£1/2.' The
positions of symmetric daughter points depend on whether p
andrsor q are even or odd, as shown in the table 2.2.2. When
P7q is oddrenen, the dominant and subdominant elliptic points
of class n+1 are born from the subdominant elliptic point

of clasé n. When q is odd, the dominant elliptic‘daughter
point is born from the subdominant elliptic mother'point and
the subdominant ellipfic daughter from the dominant elliptic
mothér point. But the position of the subdominant point
depends on whether p is even or odd {see the table 2.2.2)}.

Thig rule is very useful in locating the higher class orbits

and explains why at the accumulation point 1/n-bifurcation
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gequence éxhibits,'period—l' ar ‘period-2*' behavior, accord-
ing as n is even or odd, as will be seen in the next

Bection.
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p=  0.4006000000000400

I

DEV. MAP

WINDOM

¥1= -8.6300
Y1- -0.6000
'xz: B! Gwa
¥2- 8.6000

TICX- 0.188
| T10y= B.LBBB

Figure 2.2.1 : A pair of periodic orbits of rotation

number 1,6
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p=  {,2800000000000000

DEU, MAP

TICK= @.1600
TICY= 10,1808

Figure 2.2.2 ; A pair of periodic orbits of rotation

number 1./5
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pP=

-0.84000000800080600

Figure 2,2.3 @

number 2/5

DEV, MAP -

A pair of periodic orbits of rotation



p=  -(.@5080e0e00000000

=

DEV, MAP

WINDOW

X1= -0..000
¥i: -9.5399
)
¥2- 0.5000

£ TICH= 0,100
| | TICH- @, 1680

Figure 2.2.4 : A pair of periodic orbits of rotation

numher 1/4
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p= -0, 067)0880600008000

A wmwm«r“@ﬂ

ki TN
] % :

*"‘Mmr\wmm%
PN

Figure 2.2.5 : A pair of periodic orbits of rotation

number 1/16 when the central frequency is bhelow 1/4
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p=  -{,068950000000000

Figure 2.2.6 ; A pair of periodic orbits of rotation

number 1/16 when the central frequency is above 1/4
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p= -{,4200000000000060

DEV. MAP

HINDOW

Xi= -0.4080
= ~0,4089
= 0.4800

2= 0.4000

TICY- 0.1699
| TiC¥= ©.1008

Figure 2.2.7 : A pair of periodic orbits of rotation

fnlumber 1,3 pop up when the central rotation frequency

is below 1,3
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p=  -,4700000000000000

'
II

o

- S| oo

: C | W

| 1= -0, 4000
. 1= -0, 4000
. | w0400
o V2= 9, 4000

e ¢k 8.1880
S | o 10 6,100

Figure 2.2.8 : The unstable orbit of rotation number

1/3 approaches the mother fixed point
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p=  -§,5200800260820000

e S| o

, | ow

= -f.4000
¥1= -9.4000
X2

= 0.4000
Y2- 0.4000
TI0:= 0.1008
TIC¥- 10,1000

Figure 2.2.9 : The unstable orbit of rotation number

173 is emitted from the mother fixed point when the

central frequency is above 1,3
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p=  -B,9750000000088000 R

DEV, MAP

Xi= -.3508
¥i-= -0,1000
Xa:

-YZ: @, 1060

TICK- 0.8160
TICY- 6.0100

Figure 2.2.10 : The phase flow near- the mother fixed

point when fhe_central frequency is 1/2
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-1, 625008200800000¢

o
i

DEV. AP

Figure 2.2.11 ;: A new elliptic orbit of doubled period

is born from the mother fixed point
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| Frgu.l-e 2.2.12. 3 A Sormakion of fow~
lw.lf- lines for class [ .
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pra | E] E, H) H,
odd/even s+ S_ TS+ Ts_
add/odd s TS s TS

+ - - . +*

‘evensodd - 8 s s 15

* + - -

Tabel 2.2.1 : four symmeiry half-lines fTor class one orbits

) n .
-1 -1 =1 - n-1
oddseven E2+ Ez- E:+ El—
n-1 n-1 n-1 -1
oddsodd E,, E) 5. E:+
n-1 ' n-1 n-1 ' n-1
even/odd E2+ E1+ . E2_ E;_

Table 2,2.%2: four symmetry half-lines for higher class

orbits (nx2)
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6;2;3 Self-similar i/n-bifurcation sequence

The remarkable discovery of universally selffsimilar
'periad-doubling gsequences in oné dimensional noninvertible
maps with one extremum by Feigenbaum (1978,1979) inspi}ed
several people (Benettin et él, 1980, Bountis, 1980,

Gréene et al, 19815 to look for ﬁeriod-doubling aequencea-in
two dimensional area-preserving gaps. They have found thgt
tpere are infinite period-doubiing sequences with asymptotic
_'self-siniiarity and the liﬁiting self-similar behaviors are
different from those in one dim. noninvertiblq maps with one
extremum .

In 1-dim. mapa, there are only period-doubling bifurca-
tions and tangent bifurcations, since the eigenvalues of the
Jacobian matrix of a periodic orbit are real scalars. But,
in 2-dim. area-preserving maps, there are generic m)n-blfurca-
tions, where m and n are coprime integers, n31 and 0£ﬁ/n£1/2.

A stable periodic orbit loses its stability by a period-
doubl ing bifureation and turns to a hyperbolic oribt with re-
flection (see figures 2,2,10 énd 2.2,11) . As stated in 82.1,
unstable orhits play the role of *scatterer' of stochastic
orbits like the pins in a pin ball game. On the other hand,
a-stable orbit does not losé.ita stability by a mfn—bifurca-
tion{0< m/n <1,2), apart from 1/3-bifurcation or sometimes
1/4~-bifurcation. In this'case, islands play the role of
'trap’ of atochastlc_orbits. In other worda,la Btochastic

orbit has a long-time correlation near these islands.
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We (1984, 19355 have satudied these island structures.
We have found that at a certaih parameter value, 1i.e. thé'so-
called accumulation point, island chains of all classes of
a i/n-bifurcation, with n=3 to 6, exlst and they have self-
similar nested atructﬁres asymptaotically. We have alao
observed that the pattern of periodic orbits repeats itself
asymptotically from one bifurcation to the next for eveh n
and to every other for odd n.

Firstly, 1 descriﬁe fesulta for odd n-tupling bifufca-
tions, with n=3,5. -

Figure 2.2.7 shows a 1/3-bifurcation. One can follow
as many triplings as one pleames, I have followed up to 10.
Table 2.3.1 shows.the parameter value at which by tangent
bifurcation é pair of stable and unstable orbhitse of period
3n+1 are horn and the residue of the stable orhit-of period
3™ at the pﬁrameter value, Table 2.3.2 shows the parﬁﬁeter
values at which the stable orbits of period 3n become unstable,
and Fiqure 2.3.1 shows the stable zones of orbits of period
3n,

As shown in the table 2.3.1, a pair of stable and un-
stable orbits of period 3n+1 are born when thé resid&e of
the orbit of period 3n is 0.7010815, asymptotically. The
‘important thing to notice-is that the successive parameter
values 1in the table 2.3.2 accumulate at a finite wvalue p*.
This point p* is called the éccumulatlon point of 1/3-bifurca-

tion point. In this case,

p* = -0.4770136842740464375... . (2.3.1)
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Also, note that given a residue value, the successive para-
meter values P, converge asymptotically geometrically with

ratio 8 (see the table 273.2 and the figure 2.3.1) :

PP -~ :
By = 22— — 5. (2.3.2)
PnPns1

In this case, the bifurcation ratio is :
8 = 20.18468+.. . ‘ (2.3.3)
S0, given a residue, the auccesaivé parameter wvalues obey a

a;aling law asymptotically :

pn - p ~ B + . ‘2-3-4)

At the accumulatioh point p*, the orbits of all classes of
1/3-hifurcation exist and they have the same residue value
asymptotically. The residues R: and R: of the stable and

unstable orbit are :

R 0.7337086... ,

(2.3.5)
R

1 ¥ 4+ %

~0.0092326--:. .

So, the parameter value of the accumulation point is below that
of each 1/3-bifurcation point of stable periodic orbits of

all claasses, aymptoticaily.
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n P_ .. R

n+l . n
0 ~0.414213562 0;70710678
1 ;0.474217895 0.699104E5
2 ~0.4768B73826 0.70112633
3 ~0.477006766 0.70103844
Y ~-0.,477013341 0.70108185
5 -0.47?013557l 0.70108055
6 ~0.477013683 0.790108151
7 . -0.477013684 | 0.70108156

Table 2.3.1: the parameter value pn+1 at which a pair of

stable and unstable orbits of period 3n+1 are born and the

. . . n
residue Rn of the stable orbit of period 3 at pn+1
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n n

1 -0.5

2 -0.47815723 20.09.

3 ' ~0, 47706996 20. 31

y ~0.4770164737 20.18676

s -0.4770138224 20.1878

6 -0.4770136911 20.1848

7 -0.4770136846 - 20.1847
8 -0.477013684289 20.184684

9 -0, 4770136842748 20.184686

10 -0.4770136842741

b .3.2: = - . i
Table 2.3.2 lsn (pn__:l pn)/(pn p ), where P, is the

n+1i
paraneter'value at which a periodic orbit of period 3n

becomes a hyperbolic orbit with reflection.
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The next step is to fix the parameter value at the
accﬁmulation point at which islands of all classes of 1/3-
bifurcation coe#iat and examine the infinitely nested
‘structure. Figure 2.3.2 shows consecutively enlarged figures
0f the period-trebling bifurcation assoéiated.witﬂ two
symmetric points on the_symnetry‘linqa. There are two
synnet:y ]ines y=0 and y=x-fp(x) corresponding to S-gsymmetry
and its complementary T S-symmeiry (see 6 2.2). But it
is more convenient to see the phase flows near the symmetric
pPoint on the complementary symmetry line in the Henon's

quadratic map;

X X' = - Y + 2f_(X) _
T, 3 —) - : (2.3.6)

\'4 v’ =X

.
where fa(X) = 5(1-ax'} N _
since it has the complementary straight line ¥ = X (1.1.3.10).
In fact, the DeVogelaere map (2.2.1) can be transformed into
the Henon'’'s map (2.3.6) by a canonical coordinate changé:
2 (X-z) , Yy = a
2y1+a 2J1+a

P = 1—J1+a = =a-Z .

X =

(Y"‘z) - fp(X) »
(2.3.7)

So, we examine thg infinitely neated strpctﬁre in terms bf
two representations; S-symmetry is represented in terms of
- the DeVogelaere’s coordinates (y=0} and TS-symmetry is
represented in terms of the Hénon's coordinates (Y=X) ;

As explained in § 1.2.3, when one periodic point Pn(O)
of odd period A is on the symmetry line of 8, ¥y=0, the

[(4+1)/2)th point from that point tpn((1+i)/2)) is on the
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complementry line, ¥=X (Pn(m$= Tm-Pn(O)). It is importamt to
notice that when one symmetric poit is the domihant elliptic
point, the other one is the subdoninant elliptic point.

For example, in the fiqure 2.3.2, A ig the subdominant

n=-1
elliptic point and A;_l is the dominant elliptic point.

But, for the next higher periodic orbit An is'the dominant
elliptic point and A; is the subdominant eiliptic point.

In such a way, on each symmetry line, the dominant elliptic

" point and the subdominant elliptic point aﬁpear alternatively
as n increases, 8o, as shown in the figuré 2.3.2, the pattern
of the periodic orbit of period 3% is similar to that of the

2.' That is, magnification of the

1

periodic orkit of period 3
region near the subdominant elliptic point of period 3n+ by
appropriate f;ctors yields the same figure near the subdomi-
nant elliptic point of period 377}

on eachisfmmetry line, gsymmetric elliptic polnts converge
to a 1imit value 'in such a way as shown in the table 2.3.3.

A8 expected, the sequence exhibits ‘period-2' behavior. The

limit value on the line y=0 is:

x* = .2840928311..- ,
and the limit value on the line Y = X is : (2.3.7)
»* i
A" = -0.48839B124.». N

That is, on each symmetry dominant points or subdominant
points converges asymptotically geometrically to the 1imit
value with ratio x. Therefore, the ascaling factor along the
symmetry line is:

x = -43,9807 .
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0 Burr
Anti Anga
O Cupa

Figure 2.3.2 : Period-trebling bifurcations associated
with two elliptic symmetric points on the symmetry

. F ” 4
lines y=0 and v¥=X . ﬂn' Bn‘ cn, nn' Bn, and cn are

R-periodic points correspoding to Fn(o), Pn(E/B).
P (2¢/3), rn((n+1)/é>, P ((R+1)/242/3), and

P_((2+3),2-2/3) of the text with ¢ = 3™, respectively.
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n T

1 0.3213

2 0.2898 4,.77076
3 0.2832 . =9.20728
4 0.28396 4.78659
s 0.28411 -9, 18864
6 0.2840957 4.78665
7 0.28409233 -9,18816
8 0.28409276 4.786653
9 0.28409284 -9.188152
10 0.28409283 |

Table 2.3.3: 'xn is the x-component of the position of the
symmetric elliptic point of period 3™ on the line y=0.

«n=(xn_ - gn)/(x -x )

1 n n+l
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We also obtained scaling factors along and acrose the
symmetry line by comparing the triangle with vertices An' Bn,

B and C , as

Cn with the triangle with vertices An+2' ne2 n+?

shown in the téble 2.3.4. The scéling factors along and
across the aymmetry line are;

X = -43.9807

and {(2.3.8)

B = - 186.723 .

In the way stated abaove, at the_accumulation point p*,
 the pattern of periodic orbits repeats itself from one bifur-
cation tq every other one when magnified by the rescaling
factor @« and pB. | |

We also studied two further trebling bifurcations of 2.3"
and 6.3 and found.the same results for both cases, except
that symmetric points are on the same symmetry lineé: the
former is on the S-symmetry line(y=0)and the latter on the TS-
sjmmetry line{¥=X) and thus there are twoc accumulation points
on each symmetry line y=0 or Y;x. In the latter case, the
orbit of the basic period 6 is one bifurcated of the mother
ofhi? cf period 3. So, these self-similar l1imiting behaviors

appear tr 'be universal,
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" Table 2.3.4 ; Sequences of perioding-trebling

bifurcation

x (1) = {A_-B_} ~ (A ~B )
by n

n x- N+l N+l X
x (2) = (ﬂé~D;)x / (ﬂ£+1—B;+1)x
g_(1y = (B-C_ 0, 7/ (B =C_ .00y
bn(2) = (B;—cg)v / (B;+1-c;+1)Y

are defined with respect to Figure 2.3.2 .,

(An—Bn)x is the
the y-component

s 4 .
n—Dn)x is the

the Y-component

x-component of (Rn—Bn) and (Bn_cr)

of (B_.-¢c_ ) . b’ =B’
n n n n

‘ P4 ’ P4 s
- - d -
X-component of (A -D°) and (B -C )Y

s’

”
of (Bn—cn)
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Table 2.3.4

o« (1) x (2) B,(1) B,(2)
-2.39523 -47.9717 -32.1398 5,97879
-~17,9389 2.46836 5,94564 -31.5555
2.45693 -17.8893 -31.4510 | 5.94589
-17.8954 2.45809 5.93983 -~31.4376
2.45779 -17.8943 =31, 4364 5,93983
.-;7.3942 2.45781 5.93982 -31.4360
2.45781 -17.8942 ~31.4360 5.93982
-17.8942 2.45781 5,931881 -31.4360
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_The 1/5-bifrucation sequcnes also exhibit ‘period-2’
behaviors like the 1/3-bifufcatioh sequences. So, wé
describe our results briefly. Given a residue value, the
succéssivéﬂparameter values pn converge ﬁﬁynﬁtptically

Qeometrically'to the accumulation point p' with ratio 8

p. ~Dp _ G , ‘ o (2.3.9)

where p* = 0.17713742750981... .

As shown in the table 2.3.5, the bifurcation ratio is :
5 = 20.0478 . (2.3.10)

At the accumulation point, the orbits of all classes ef
1/5-bifurcation exist and they have the same resiude values
asymptotically. The residues R: and R: of the stable and

unstable orbits are:

R

0.38915-+. ,
(2.3.11)

R

I * + %

-0.16083. -« .-

Figure 2.3.3 shows consecutively enlarged figures of
the 5-tupling bifurcations associated with two symmetric
points on the symmetry lines y=0 and Y=X, when the parameter
is fixed at the accumula;ion point-p'. On each symmetry line,
symmetric elliptic points converge to a limit value: the
limit value on the line y=0 is :

x* = 0.408s5718-.. ,

and the limit value on the line ¥=X i=s:

x* = 3.456924... . C{2.3.12)
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A8 shown in the figure 2..3.3, the pattern of periodic orbits
repeats itself from one bifurcation to every other when
magnified by the scaling Tactors « and p along and acrose the
symmetry lines, respectively. The acaling factors can be
obtained b} comparinﬁ the pentagon ﬁith vertices An s+ B

n 'cn ’

D_ and En Wwith the pentagon with vertices A

n n+2 * B

n+2 ’

Cn+2 » Dn+2 and En+2 , as shown in the table 2.3.5. The

scaling factors along and across the symmetry line are:

X = -43,27
and (2.3.13)

B =~ 75.70

In summary, fof odd n-tupling bifurcation with n=3 and 5,
n-tupling bifurcation sequences exhibit 'period-2* hehaviors
at the accumulation point p'. However; the bifurcation ratio
&, the scaling factors x and p depend on n. The reason why
these sequences exhihit ‘period-2' behaviors is that the
dominant elliptiﬁ point and the subdominant point appear

alternatively and converge to a limit value.
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Figure 2.3.3 ; Period S5-tupling bifurcations assoéiated
with two symmetric elliptic points on the two symmetry

E_, &, 87, ¢, n’ and

lines y=0 and ¥=X . a_, B_, C_, D nt Ba* 2t o Dp

n n n n'

‘E; are ¢-periodic points corresponding to F (0), P _{(2/5)},
Pn(Qﬂ/S), Pn(3ﬁ/5). Pn(HEIS,. Pn((ﬂ+1)/2). Fn“ﬂ+1)/2+g/5),
Pn((¢+1i/:+22/5), P ({2+1)/2432/5),  and P_((2+41}/2+42/5)

with 2 = 50 , respectively. Pn(n) = Tm-Fn(DD
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Table 2.3.5 : Feriod s-tupling sequences

on(1) = (C =By 2 (Che1™Bhar?x
*p2) = (B -An), /-(Bn+1_ﬂn+i)x '
« (1) = (Af-F s (n;+1*‘;¥;)x ’
“;(é) = (FR-GD)y 7 (i1 ~Cnetx
BL1) = (C -D )/ (cn+1-nn+1); ,
ﬂn(Q) = (En—En)y 7/ (Bn+1-En+1)Y R

Fd Fd Fd 7’ e’
B (1) = (Bn E )y 7 (B ,-E__,)y ,» and

’ ’ Fs rd
(ChDply 7 (cn+1—Dn+1)v

"

’
Bn(Q)

are defined with respect to Figure 2.3.3 ._(Cn-Bn)x

and (B_~A_)_ are the x-components of (C_-B_) and
n n’'x . n °n

(Bn-ﬂn), and (cn-Dn)y and (Bn-—En)y the y-components

. - ’ rd . ’
qf (Cn—Dn)-and (Bn—En) , respectively. Fn = Bn + En

s ”’ rd I rd s s
Gn = Cn + Dn . (ﬂn—r‘n)x and (Fn—Gn)x.are the X-compo-

7/ Fd . 7/ I . ’ 7/
nents of (qn—Fn) and (Fn—Gn) , and (Bn—En)Y and

’

(c’-p”’), the Y-components of (B ’-E’) and (c’-p”"),
n n n n n

ny

respectively. Bn = (pngl—pn) / (Pn-pn+1)' p - is the
parametef value at which the residue of the stable

orbit of period s is sin(n/s)
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Table 2.3.5

n 5, e (1) ® (2) (1) LM EY
2 19.9690 7.40849 0.831189 _ _29. 2454 -5.59284
‘3 20.0877 -6.24997 -30,8353 1.41469 7.20745
4 20.0436 7.16292 1.40393 -30.8921 -6.04406
S 20.0479 -6.03398 © -30.8830 1.40105 7.16761
6 - 20.0476 7.16827 1.40099 -30.8829 -6.03628
7  20.0478 -6.03657  -30.8834 1.40105  7.16804
n 8, (1) 8 (2} g;<1) B (2)
2 -17.8562 -8.83636 8.77680 4.35194
3 3.73783 " 8.14048 -9.09062 -19, 4407
3 -19.6196 -9.11968 8.29347 3.85777
s 3.86617 8. 30441 ~9.11740 119.5907
6 -19.5885 -9.11757 8.30287  3.8645S
rd 3.86432 8.30272 ~9.11786 -19.5900
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Secondly, I describe results for even n-tupling

cations, with n=4 ,6 .

bifur-

A8 explained in 8 2.2, there are two types of 1/4-

" bifurcation. A pair of stable'and unstable orbits of period

4 are born by a 1/4-bifurcation of the ist type. On
other hand, for qn(nQQJ, the 2nd type bifurcation is

up to n=8. Like the case of i,/3-hifurcation, a pair

1

aﬁd'unstaﬁle'orbits of period 4"*1 are born when thé

the

observed

of gtable

residue

of the orbit of period Hn is 0.494---, asymptotically. Like
the case of odd n-tupling bifurcation, given a residue, the

‘successive parameter values pn converge to the accumulation

point p* asymptotically geometrically with ratio 5 :

p_-p" . &% , (2.3.14)
n .
where p" = -0.0689824402834... ,
and
5 = 24.45
These results are included in the table 2.3.6. S8o, at this

accumulation point the 6rbits of all classes of i/4-bifurca-

tion coexist and also they have the same residue values

asymptotically. The residues R: and Rf of the stable and

unstable orbits are: .

R 0.5178..- ,

1 %X + %

R ~0.02777s+0

So, the parameter value of the accumulation point is

(2.

3.15)

above that

of each i/4-bifurcation point of stable orbits of all classes,

asymptotically.
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n n

1 -0.1

2 -0.07 23.065
3 ~0.06904 © 25,004
4 -0.06898 24, 45y
5 -0.0689825 24,478
6 -0.06B982448 24,451
7 -0.0689B824442 24.450
8 -0.06B9824440

Table 2,3.6: 5n=(pn_1- pn)/(pn-p }, where p, is the para-

n+1i
meter value at which a periodic orbit of pefiod Hn beconmes

a hyperbolic orbit with reflection.
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Figure 2.3.4 shows consecutively enlarged figures ot
period-quadrupling bifurcations associated with two elliptic
symmetric points on the symmetry line y=0. As explained in
§ 1.2,3, when one periodic point Pn(O)of even period A is on
the symmetry line y=0, the (4r/2)-th point from that point
Pn(;/z) is also on the same symmetry line y=0 (Pn(m)=Tm-Pn(0));
Unlike the odd n-tupling bifurcation, the dominant elliptic
point and the subdominant point appear sucééaaivaly ag n
increases.-redpectively. In the figure 2.3.4, An is the
‘subdominant point and Cn the dominant point. So, as shown
in the figure 2.3.5, the pattern of orbita repeat itself from
one bifurcation to the next one asymptotically when magnified
by appropriate scaling factors.

Syﬁmetric elliptic points on the line y=0 cdnverge
to a limit value x* geometrically with ratio o

x* =z -0.4086080643... ,

. (2.3.16)
x = -~ 5.6814 .

The ratio x is just the scaling factor along the symmetry
liné.

We defined various sequences for scaling factors in
the table 2.3,7 like the case of odd n-tupling bifurcation
and computed them. The results are included in that table.
As expected, unlike the case of odd n-tupling bifurcation
sequences , these sequences exhihit *period-1i' behaviors,
asymptotically. The scaling factors along and across the

symmetry line y=0 are :
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x = -5.614 .
and - {2.3.17)

p= 14,27

We also Btudied one further quadrupling bifurcationa of
s-ﬂn. Also, in this case, we obtained the same result.
In this case, the orbit of basic periocd 6 18 one bifurcated
from the mother orbit of period 3 and so symmetric elliptic

points on the line ¥=X. Therefore, these aself-gimilar limiting

behavioras appear to be universal.

The 1/6~bifurcation sequences also exhibit ‘périod-i'
behaviors like the i/qnbifurcation sequences.

Given a fesidue value, the successive parameter values
PL converge to the accumulatibn peint pf asymptotically
gedmetricallf with ratio 5 :

p - P ~ & ’ (2.3.18)

where p* = 0.33623839313... ,

and as shown in the tahle 2.3.8, the bifurcation ratio 6 is:
5§ = 13.85 . A{2.3.19)

At the accumulation point, the orbits of all classes of
1/6-bifurcation exist and they have the same residue value
asymptotically. The residues R: and Rf of the stable and

unstable orbits are;

R* = o.3130

+

" {2.3.20)
R* = -0.2420 .
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Figure 2.3.4 ; Period-quadrupling bifurcations associ-~

ated with two symmetric elliptic points on the symmetry

,

line ¥=0 .-An, B o’

’
B, €. D, A, B

r rd
c and D_ are
n 'n n’ a n

¢-periodic points corresponding to Pnto). Pn{Q/u),
Pn(lfz), Pntst/ai, Pn(Q/B),‘PHCBE/a). Pntslfa). and

P_(72/8) of the text with & = 4™ | respectively.
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Table 2.3.7 : Period-quadrupling sequences.

(ﬂn—B 1, 2 (A -B ) ’

xpft) = n’'x n+1” o n+1'x
xp(2) = AB-C) /B Chaa Ix
“nta)'m (ﬂ;”B;)x 4 (ﬂ;+1—B;+1)x ’
.Hh<1) = (Bn—Dn}y / (B =Do,1 0y

B (2) = ca;-n;>y / (a;+i—né+1)y , and
B (3) = (B;—C;)y / (B;+1—C;+1)y ,

are defined with respéct to Figure 2.3.4 . (ﬁn-Bn)x ’

’ F
(Bn-cn)x and (ﬂn-Bn) are »-components of (ﬁn-Bn),

s ,

. r _ .
(Bn—Cn) and (ﬁn—Bn) , and (Bn—Dn)y , (ﬁn'Dn?y and
. ;s s
(Bn—cn)y y~-components of (Bn-Dn), (An—Dn) and
L, 7
(Bn—cn) , resPectlvely .
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Table 2.3.7

n mn( 1} un(‘z) o:n( 3) Bntl) Bn(?) Bn( 3)

2 -5.6072 -5.8023 -4,7438 14.828 17.148 16. 440
3 -5.6169 -5.5718 -5,.9847 14, 365 13.529 13.628
o ~-5.6138 -5.6309 -5.4984 14. 294 14,588 14,589
= -~5.6141 -5;511? -5,6413 14, 277 14, 211 14,213
[ -5.6142 -5.6151 «~5,6078 14, 270 14. 287 . 14.287
7 -5.6140 -5.6137 -5,6153 14, 269 14, 265 14,2865
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Figure 2.3.5 shows conseéutively enlarged fiqures of
" the 6~tupling bifurcations associated with two symmetric

elliptic points on the symmetry line y=0, when p=p*. On

that line, symmetric elliptic points converge to a limit

value: |

x* = -0.578806968... . ‘ (2,3.21)

We defined various sequenées for scaling_factors in
the table 2.3.8 and computed them. The results are included
in that table. Like the 1i/4-bifurcation sequences, these
sequences exhibit ‘period-1' behaviors,.  asymptotically.

The sc¢caling factors along and across the symmetry line y=0 is:

x = -8.25 ,

{2.3.22)
g = 6,30 .

In summary, for even n-tupling bifurcation with n=4 and
G,In-tuplipg bifurcation sequences exhibit *pericd-1*
behaviors at the acéumnlation point p* . Period-doubling
Sequences also exhibit ‘period-1’ behaviors. But, the limi-

ting self-similar behaviors depend upon n.
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Figure 2.3.5 ; Period 6-tupling bifurcations associated

with two symmetric elliptic points on the symmetry line

’ ’ . . -
y=0 . ﬂn, Bn, Cn, Dn, En. Fn, ﬂn, Bn. Cn. Dn, En, and

F; are f-periodic points corresponding to Pn(o), Pn(E/S},
Pncznfs), Fn(3ﬂ/s), Pn(uﬂ/ﬁ), Pntsn/s), Pnlsg/as),

. n
Pn(9¢/35). Fn(152/36), Pn(21€/36), Pn{279/36) with €=6,

. m
respectively. Pnfn) =T -Pn(D)
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Table 2.3.8 : Period 6-tupling sequences.

cxn(-l) = (HII_BT])K 7/ {ﬂn+.‘l_14']']+i )X 3
mn(Q) = (Bn_cn)x d (Bn+1_cn+1)¥ ’

® (3) = (€ -D )/ (C..-D ) .,

x (4) = (H;—B;)x s (ﬁ;+1—B;+1)x ,

x (5) = (B;-C;)x / (B£+1-c;+l)x .
3n(1) = (B -F ) / (Bn+1‘Fn;1)y R
Bp(2) = (C-E )/ (€L =B )y o

B (3) = (ng-rg)y / (ﬁ;+1-F;+1)y ,
Bn(é) = (B;-E;)y / (B;+1-Eé+1)y , and
B (5) = (c;-ng)y / (c;+1¢n;+1)y

are defined with respect to Figure 2.3.5 .,

rd Fa rFd Fa
, {c_-p_) , (A’-B”) and (B’-C”)

8 -B -
¢ n Y% ¢ (Bn Cn)x n n'x n'x

n X

rd Fd

are x-components of (ﬂn—Bn), (Bnncn), (Cn—Dn), (Hn—Bn)
rd rd 4 rd

and (Bn—cn) , and (Bn—Fn)y ’ (Cn-En)y ’ (Hann)y

»

Fd P Fd
(Bn—-En)y , and (Cn-D
)

’
(Cn-En), (Hn-Fn

, -
n)y y-components of (Bn Fn),
Vs

,-(B;-En), and (C;—D;) , respectively

8 = (p

n ) , where P is fhe parameter

n-1"Pn’ 7 PnPnsq

value at which the residue of the orbit of period 6“

is 1,4
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‘Tahle 2.3.8

n L ntn(:.) o(n(‘z) un(3) un(‘l) lxn{S)
2 13.91  -9.820 _9,098 -9.234 1.307 -S.298
3 13.82 ~-8.006 -8.206 ~8.268 ~10.36 ~-10.04
4  13.84 -8.340 -8.285 -8.260 -7.832 -8.094
5 13.85  -8.248 -8.257 -8.261 ~8.281 -8,283
6 13.85 -8.257 -8.254 -8.252 -B.231  -B8.254
n Bn(i) Bn(Q} Bn('."a) Bn(‘i) Bn(SJ

2 6.080 S.596 12.24 12.01 11.67
.3 5.289 6.353 5. 226 5.202 5.128

4 6.290 6.282 6. 454 6.453 6.457

s 6.300 ' 6.300 6.289 6.284 6. 281

6 6.303 6.303 6.306 ' 6.306 6.305
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.In the above, we show numerically that there exist
limiting self-similar behaviors at the accumulation point
(p=p*) on smaller sbatialscales. In fact, eveh more AsYRpP-
totically self-similar behaviors exiat neaf the accumulation
point (Lee et ai, 1984, 1965). Givén a residue vaiue R.viet
P, bhe the'paramefer value at which periodic orhit of class-n
__has R. Then, asymptoticaliy,_the pat{ern of the periodic
orbit of class-n when p:pn appears to be the sahe ag that
of the periqdic orbit of class-m when p=pm on smaller spatial
scélgs. where m is (n-1) for even n and (n-2} for odd n,.

S0, when the parameter and the dyhamic variahieslare rescaled
with the resdaling factors 6, o« and g , the'pattern of period—‘
ic orbits also reﬁeats itself from one bifurcation to.the

next for eveﬁ‘n~tupling bifurcations and.to'every other for

odd n~tupling bifurcations.
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8 2.4 Renormalization Analysis of Bifurcations

Weflsas) also studied the asymptoticélly self-similar
_island structures describéd in the previous section by é
simple approkimate renormalizatibn method.

Therrenormalization method was introduced into the
dynamical:aystem first 5? Feigenhaum{1978,1979) to study
the Feigenbaum sequence in 1-dinm. ﬁonihvertible mape with one
extremum ., The method soon extended to the 2-dim. area-pre-~
serving maps for the study ﬁf period-doubling agquences and
critical invariant cufves. Collet et al (1981), ﬁnd Widom and
Radanoff (1982} solved directly the fTixed point equation for
the renormalization oful/zvbifurcation ih ﬁap and action sﬁace.
respectively and obtained an approxim&te fixed poinf, the séal-
ing factors and the bifurcation ratio. Using MACSYMA, Greene
et al (1981) also obtained an approximate universal map, but
they used fhe information of the accumulation point and the
scaling factors obtained by directly following i1/2-bifurcation
sequence. However, these methods of directly solving the fixed
point equation for the renormalization of i/n-bifurcation bhe-
come rapidly intractable as n increases, Therefore. ;6r higher
n-tupling hifurcatiqn, it is desirable to use an approximate
renormalization method in which the difficulty of calculations
does not increase significantly with n.

The approximate renormalization method used in this
thesis may Be called the metho& of quadratic approximants.

"Since the self-similarity is an asymptotic property valid
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oniy in the immediate. vicinity of symmetric elliptic point,
we.expect that it would be sufficient to retain uﬁto quadra-
tic terms in'the Tayléf exhansidn_of ihe composed.map. So,
the quadratic approximant is formed by keeping the terms to
the 2nd order in the Taylor expansion of the nth iterate of
a map T, i.e. Té."Then, comparison of successive approxi-
mants of a 1/n-bifurcation givés the accumulation point p*,
the bifurcat;on ratio B, the scaling factéru o« and g, and
the universal residue value R*. Furthermore, by lcoking
' a a+1

at the recurrence relation between Tn and Tn as 1

increases, we can make better approximations and obtain

the approximate universal map T*:

» . 2. - ® 0
T"= 1im 4 -Tn*-n , A ,
2900 P s 0 2] "

Actually Helleman(1980) and Helleman and Mackay{(1983)
used this method for 1/2-bifurcation. In their calcgulation
the¥ compare qﬁadratic approximants for T and T*, i.e.
the lowest pair of approximants. We(1986) made hetter approxi-
mations analytically by comparing the next higher approximants
for T2 and Tq . Although approximants for ldw order iterates
can be handled analytically , it is imperative to resort to
numerical method for quadratic approximants for high order
iterates of T for i/n-bifurcation with high n‘and high order
calculations. So, by the numerical implementation of this
simple method, we obtained universal mapé, gcaling factors,
bifurcation ratios and universal residue values for i/n-

bifurcation. with n=2 to 6.
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Recently Lichfenherg(lgsﬁl obtained accumulation points
for higher ﬁ-tupling hifurcationsin>é)in the standard mab
by a simple ﬁethod. He reconstitﬁtes approximately a local
' atanﬁard map about a.single islaﬂd of period n (h>2)..
Th;ough this procedure he obtéins a recurrence relation
between the'old parameter of the original map and the new one
of the local map, and calculates the.accumulatibn point as
the fixed point of the recurrence relation. Howe#er, in
effect, his ohe—nhot'renornalization sdheme amounts fq our
lowest A(A=1) approximation.

As an example, we take 1/2-~bifurcation and describe our
method briefly. Let us denote the subdominont point of

period 2% as (% 0). Then, the idea of the renormaliza-

‘I'.’
tion method is to associate, for each p’ , a value p such

o4 n Q-1
that Tp with origin (xl,o) looks the same as Tp' on a

small spatial scale:

o(2-1) ]

2 _
Tp’ = g.Tp A1, (2.4.1)

where A is the geometric reacaling matrix;

x 0

A = :
o B .

21
If we denote T as
21 X x’ = F;‘)(x,y)

Th ¢ d VTS

¥y Yy = Gp (x,y) ’
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(L) » (1)

. . ” . ‘
then Fp (xn »0) = O and Gp (x‘ ,Q0)=0. .,

(1)

Let us first make Taylor-expansions of Fp (1)

nd G
a p

about (X 0). Then,

‘D

FO8Y ) = R 4 AL(p)e{x-R.) + B.(P)ey + U.(p)e(x-R.)?
| . )

+ V‘(p)-(x-x‘)-y + l(p)-y‘ * raa .,

G (x,y) = CoUP)e(x-R.) + D.AP)-y +Q (p)-(x-ﬁ )2
P ’ I | [ 1 s 4

~ g . ‘
+R AP (X-X )y + l(p)-y‘ oo .

Since the self-similarity holds in the dicinity of the

perlodic point, we expect that it would be‘sufficient to

keep the terms to the th order in Téy}or-expansion.

o 4
Let us define the linearized map H;m)(x,y) pf_T: {x,¥)
as
TE M, 18,y
w8 (x,y) = DTQn(x ¥) = P ?
’ = ' = . *
P S 130, 2 x,
P P
{(2.4.2)
by introducing four'fuﬁgtions H;n), 1;1), J;l)and Kél) .

Here the area-preserving condition is given hy

H(I)-K(IJQI(I)-I(l)

=1 f x . 2.4.3
b - p p or any {(x,y) { )

Then, the coefficients of linear terms of Taylor-expansions

can be represented by :
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Al(p)
Cl(p)

Dltp)

Oon the other hand, in

1982). So,

hal
(xl »0) is;

the trace

Trnn(p)

= QAI(P)

of the Jacobian matrix of T:

N . 1) A :
n:)“(x1 , 0), B,(p) = 1; "%, . oy,
J;I)(Ql , 0} and (2.4.4)

(1), A _
R, . 0 = caeByecyivA,

symmetry coordinates, A1=Dn (Mackay,

[l
about

{2.4,5)

The coefficients of quadratic terms are also represented

by the defivatives of the above four functions:

Ultp)
Qltp)

Rl(p)
and

Sl(p)

il

H

. aH(l) BI;I)
E'pr a ValP) = 33 A
(xl’O) ' (xl,o) '
. aJ(l) L aI;l)
2 e I A LA IR N
(xn,o) ' (xl,o) ’
aK(n’ (2.4.6)
p ‘ —_ - - haad -
% I(Q 0)— (23n Q1+Cl Vl QDI Ul)/Dl s
l.’
ot
> 5% & oy” (BarRat2Cyo WDy YI/a0 )
n'

In (2.4.4) and (2.4;6), the area-preserving condition (2.4.3)

is used to express D

coefficients.

21

T

'_Taylor—expansibn of T;

I R'I and Sl

in terms of the other

In such a way, the quadratic approximant of

1
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Then,



, : 1-1.
substituting the quadratic approximants of T;, -and T:

into{2.4.1) , we have

A, pNy=A (D), n,_lcp’)gnltp) ,

By ,p7)= 3 B (p) , c‘_l(p))= Sem

A MTE R NI A 3 5 Vatp)

W, ,(p )= E;W‘(p), ay ("= E;Q‘fp)',

Ry ,(P)= 2 R,(p), and 8, (p)=F8,(p) . (2.4.7)

Comparing the diagonal coefficients of the linear terms

2 : : 2-1

of T: with origin(:’c‘l ,0) and T;, with origin (X ,0),

1-1
we can obtain the accumulation point p* and the bifurcation

ratio 6 as follows. By (2.4.5) and (2.4.7) , we have ;

, ‘
Tr Hn~1(p y = Tr Hn(p) . {2.4.8)

This recurrence relation (2.4.8) can be also obtaihed by the
method of Derrida and Pomeau{1s80). The fixed point of

< < < < »
the recurrence reiation gives the accumulation point p:

. . .
Tr Hn_l(p ) = Tr Hl(p ) o (2.4.9)

and the bifurcation ratio is given by an equation :

. a(Tr M (p))/dp Ip.
- = . (2.4.10)

dp » , P
p d(Tr H;*ltp )}sdp |p*

As A increases, naturally one can chtain more accurate values,

173



For the.first two-orders, explict analytic recurrence rela-
tionﬁ can be easily derived, and thus Derrida and Pomeau(1980)
obtained b and § to the second order. We extend the calcula-

tions to higher orders. Our method is as follows. For any
{1) (1) J(l)

given (x,, ¥y,), the function vaiues of Hp ,‘Ip » Iy and
K;l) in (2.4.2) arfe eamily calculated from
B o,y 1M g,y 0 ) 2 :
(1) P 1p 1 T
‘m AX_,¥, )= . = 1 n. ,»
P L ey kR e,y |
'p 1'7 p 1’71
. (2.4,11)
."where
. £l (x.) -1
m.= DT_ = p 1
1 P ’,. ’ ’ ¥
1-fp(xi+1)-fp(xi) fp(xi+1)
, [ Xiel ]_ T [ xi]
f (x.) =p - 2:.(1~p)-X. and I -
p 1 . yi+1 yi

Therefore, Tr Hl(p)is readily calculated after finding the

periedic orbit of period 2. That is,

H(l)

N _ B
Tr Hl(p) = 2. (xl.o) . {2.4.12)

The equation for p to be solved is given by :

Fip)= Tr M, (p) - Tr Hleltp’ =0 . _ (2.4.13)

The root of F(p)=0 is just the accumulation point p* and the
universal residue R* is (2-Tr H‘(p'))/q. Also, the bifurcation

ratio 8 is the ratio of the slopes of Tr Hl(b)and Tr M (p') at

1-1
the accumulation point(see (2.4.10) ). At p:p*, the derivatives

of Tr Hl(p) and Tr H‘_ltp') are calculated by ordinary differen-
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tiation routine. We numerically aolﬁe (2.4.13)'an§ {2.4.10),
and dbtain p* and 8 to the 6th order (see the table 2.4.1),
As shown in that table, we have more accurate values as 1
increases.

-Once we have p*, we can obtain the scaling facters « and
g through (2.4.7). At the accunulation point p*. we firsat

find the subdominot point of period 21 and calculate the
(1) (1) (L)
I J
p " p " P
"{2.4.11). Next, we calculate the derivative values of them

function values of H and Ké#’at (21; 0) through

" ’ .
at (xl'O) by ordinary differentiation routine. Thus, at pzp',

1-1 i 1
we obtain the quadratic approximants’ of T:* and T:* .

Then, by {(2.4.7), when p=p*=p(, we obtain not only the ratio
of the scaling factors w/p comparing the off-diagonal éoeffi—
cients of the‘linear terms, but also the scaiing fabtars x
and p, separately comparaing the quadratic coefficients. As
shown in the iah!e 2.4.1, we obtain more accurate values of
x and p as 1 increasesf

Finally, we obtain an apﬁroxinate universal map of 1/2~
bifurcation as followa. We define a renormalization trans-

formation N :

F

"TY = N(T) = A T a7t ,
o 0
where A = and the subdominant point of period 2
o B

in T lies at the origin. Let us define T1 as the L-times

. ] 2‘ -4
renormalized map. That is, T1= N {To,) = A" -Tg A

with origin (Ql 0. If we put T,:Tp* , then l.i.m"I“l = T*,

4300
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as showh in the figure 2.4.1.. Then, we have approximately

. 4 _ _
T*s AI-TQ -.A_'l for large 4. Thus, we have an approxXimate

universal map ™ of 1/2~bifurcation:

T* - AE-Tz o.‘,-s
P
®/ = =1,27176%-1.01322y-2.31933x* +0, 334B22Xy+-+«
¥y’ = -.609305x-1.27176y+.793849x% +5. 9196 3Ky +- = »
and thus the universal residue R* is :
R* = 1.13588 .

Consider the linearization of N, dN, in the neighborhood
of T*. Then, it has one relevant eigenvalue & butside the unit
circle which\is coordinate independent. Of course, there
exist coordinate dependent‘unstable eigenvalues (Mackay, 1982).
However, it is possible to choose coordinates for araystem in
order fhat it hawve no components in those unsfahle direc-
tions(Mackay,1982). These coordinates are called scaling
coordinates. Maps in the fTigure 2.4.1 are represented in
terms of scaling coordinates. So, only one relevant eigen-
value & e#ist. The horizontal line in that figure represents
maﬁs in which the parameters are fixed at the accumulation
points. This is called the critical surface of maps. So, all
maps in this surface conﬁerge to T® under the rencormalization
N. In such a sense, the limiting Belf-similar bhehaviors are
universal, The wvertical line in that figqure represents a
universal 1-parameter family. This unviersal 1-parameter

satiefies :
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*
w6 = H(Tu Yo

where u is the sﬁaling parameter and thus at u=0, the map is
T*. As shown in the figure, a 1-p5rameter tamily of maps
'.near the accumulation point édnvergea to the universal 1-
‘parameter under the renormalization.

The renormalization method'can be also applied to

1/3-, 1/4-, 1/5~ and 1/6-bifurcations. However, since 1/3-
and 1/5-bifurcation sequences exhibit ‘period-2* behaviors,

the renormalization transformation N now must be;
-, 2 "
T’ = MT) = A-T" A%,

‘where n=3 and 5. Let T, be the initial map. We define T, by:

i |
' 21
T,= n‘(To) = A‘-T.rI a7t
Then, for T, = Tpu we have :
21 :
lim a‘-rn' S o
L0 ,p-

and for Te = T:; we have:
{24+1)
1im at. -
 A300 p*
Therefore, unlikxe even n-tupling bifurcation, we have two
»

fixed T* and T** t T and T** are the universal maps which

describé the phase flows near the subdominant and dominant

elliptic points, respectively. However, the linearization

of N, dN, near these two fixed points has the same relevant

~eigenvalue 5.
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Using this methdd; we have performgﬁ the calculations to
higher order for 1/3-,1/4-,1/5-‘and 1/6~bifurcations. The
results of p*, 6, x and p are listed in the table 2.4,2,

For 1/4- and 1/6-~bifurcations, like 1/2-bifurcatlon, we
obtained - a single approximate univera;l map. For 1i/4-bifur-

cation, we have :

5
™ & AE'.T‘l _A-S
. P
x’ = ~0.03561X-1.0114y~1.251%* -0.3308Xy++ .-
¥’ = 0.8874x-0.03561y-0,1982x" +0. 4157Xy++ - -
. »
with R = ,51781

and for 1i/6-bifurcation, we have

5
o 2 A5.75 .aA"5
.1 ,
x’ = 0.374x-1.129y-0.764%> ~0.623XY+- + »
¥’ = 0,7617x+0.374y+0.0588X* ~0.0967Xy+« -

és explained above, for 1,/3- and 1/5-hifurcations, there

exist two universal maps. For 1/3-bifurcation. they are:

6
™ a a2.T3 o732
P»
x? = ~0.45742x-0.908416-1,737x* -0. 23725XY+» « -
. ¥’ = 0.86032x-0.46742y~0.58538X" +1.8279XY +::»

and
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X7 = =~0.46742%X+0.28035y=-17.773%* =18, 059Xy +++»

-
"

-2, 787TX-0.46742y"* -32. 037X ~33, 728Xy+- -+

with RY = 0.73371 ,

and for 1i/5-bifurcation, they are :

4
* 2 .5 -2
T =~ A -Tp* ¥ .9
[ %x%=.2217x, 46y -1, 4x* =, 377XY 4+ - -
|l ¥'= 2.07%+.2217y-.215%% + .1B2Xy.-.
and

5

T**ﬂ A2‘.1.5 -A-2
Pw

x7=,2217%4+.27Y-15,9x* =3, 21XY++ « -

4

¥z ~3.52%+. 221 7y-41. 4% =18, IXY+-

with R*=. 3892 .
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»

¢ P b o
1 -1, 265564 9.06?3 ‘ -4,1204 17.012
2 -1.266321 -8.6845 ;4.0059 16,294
3 -1,26631115 8.72541 -4,01992 16. 3729
.4 -1.2663112786 6.720586 ~4,01775 16. 3627
5. ~1,266311276899 8.721156 -~4.01814 16. 3641
6 -1.5663112?69223 8.721090 -4.01806 16. 36386
Known bést .
valﬁes «1.2663112769221 8.721087 -4.01807&7

16, 3638897

Tabhle 2,4.1:

renormalization method for is/2-hifurcation.

are those obtained by Greene et al{isai) by following

i/2-EEQUENDCE.
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n/n- »

bifurcation e - P . 5 ® B
1/3 3 - 477013684274045 HO7. 4254 -4 3. 9794 -186.723
RKnown best :
. w,477013684274048 HO7 422 -43,. 9807 -186.7
values _
i/74 S ~. 0689824440291 24.4616 -5.6119 14,2824
Known best
) ~. 0689824440286 24. 45 -~5.6141 14,269
values - : -
1/5 2 LA7Z713T7H27506 H01.75 -43, 34 -76.09
Enown hest .
values A771L3ITHZTSA0 401.92 -43.27 -75.70
1/6 5 . 3362383932 13.83 fB.2HB 6.032
Known best . 3362303931 13.85 -8.25 6,30

values

Table 2.4.2; The various quantities obtained by an approximate
renormalization method for i/n-hifurcation, with n=3 to &.
Known best values are those obtained hf following 1/n-sequence

in our works{1984, 1985).
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g 2.5 Critical behavior of an invariant circle

in a C*-map

In this section. we study whether or not invariant cir-
cleas exist in a map of class~G. In this case, persistence
of invarinaf circles is not guaranteed by Hoéer's twist
theorem, since the sufficient éfitical smoothness of a map
is now class-C' (r>3)in that theorem (§ 1.3.1);

Following Greene’s residue criterion {see § 1.3.2), we.
show numerically that a nobel invariant circle persists
below a critical parameter value. Therefore, below tﬁe
critical parameter value, the invariant cirlce plays the
role of a complete barrier to the trnasport of stochastic
orbits. We also observed that the critical behavior of
that invariant circle appears to be the same as that in
analytic map?. On the other hand, Herman(1983) has Cr(r¢*\-
counterexamples to Moser’s twist theorem. So, for a map
of claas~Cr(r<3) invariant circles may or may not exist,
depending on the map.

- In this section, we study an_area-presefving map of

class-C*, T which has a unit Jaccbian (det(DT)=1)

.-

it

[ 17 =1 + € Fle)

T: (2.5.1)
6’=9+I’ »
4 |
4e03-30,4 , 020 ¢ 14
where F(8) = | -a(e-k)>+3.(e-k) , 'V i/4 £ @ £ 3/4
4(9_1)3-%-(9-1> , /4 20 £1,

1
J F{e).de =0 .
:'0 .
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rd
Since the map T has a rotational shear (g? >0},
: -]

T-is . a twist map{(see § 1.1.2), So; the map can he ohtained

from a generating function L such that I=-8L(B,e')/80 and

I’= aL( o,0”)/807,

where L(e,0”) = 3.(0,6”)* ~ €.V(e) ~ (2.5.2)
and |
F(e) = - V(o) .

From the astationary action principle (see § 1.2.2) a periodic

6,+p yields a periodic orhit of

~sequence{et) with °t+q= t

rotafion number p/q 1f its action:
q-1 '
A= z L(e,,-0,, ) (2.5.3)
t=0

is stationary with respect to variations keeping Bq=e,+p.
T is also reversihle, since T can be factored into the
product (TS).S8 of two orientation-reversing involutions,

where

e’ = -e
s: : L3 . T (2-5-"‘,
L’ 1 + € F(O)

The four symmetry half-lines formed from the invariant points
under 8 and TS are the lines ez0, ex=Y%, I=20.and I=20-1.

We study the most robust invariant circle. The most
robust invariant circle is one that is the farthest from
nearby islands(see 8 1.3.2). The continued fraction represen-

tation of the rotation number of that invariant circle is :
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vV = [mo.m‘ .m;,o--] ='[0’2’(1, ,m] = T-zgl (205.5)

¥y = (1+f5)/2 ,

-
]
-

and the rational approximant,rn'of v

r = p )q

n n n=[m0pm.ln’°‘nmn] ’

Pner® PnsaPp * Ppoa v P2® 0 2 P31 (256

U1 Ppea'9y Y 9., ¢ A=t Q=0

Following Greene's residue criterion, we show that
the invariant circle of rotation number x'? persists under
a critical parameter wvalue e*. Near e*. it is ohﬁerved
that given a rotat#on numher-pn/qn, a pair of beriodic orbits
of the rotation nﬁmher exist. As explained in § 1.2.2, one
is a minimiziné orbit , the other is minimaximizing one , and
the differences in the actions Fn between the two orbits can
be interpreted as the area that is transported between the
two orbits per iteration. Mather (referred to by Mackay 13582) -
has shown that given a sequence of rational approx%mants

pn/qn 5 v , there exists an invariant circle of rotation v

if and only if F = lim F_=0 . When F_ is nonzero , Mather
V pw v ‘

(referred to by Haciay, 1982), Aubry and ﬁaeron(lsas), and_
Kﬁtbx(xsaz) has shown that a hyperbolic invariant set of rota-
tion number v,i.e,the so-called cantorus, exists. The cantorus
can be regar&ed as a circle with a dense set of countably

infinite gaps caused by overlap of nearby island chains.
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The critical parameter vaiue «* can be obtﬁined as
foliows. We follow the parameter wvalues € such that tﬁe
minimaximizing periodic orbit of rotation number pn/dn
corresponding to the nth rational approximant to 7'2 ﬁas sone
given residue, e.g. 1. The limit value of (En}Qaequenée ig
.juﬁt the critical parameter wvalue e*. The convergence ratio
& is the limit value.of (Bn}-sequence defined by Bn=(E

n-1"

En)/(En ~ €ns1 ). These sequencel are shown in the table

2.5.1., By superconverdging the results, we obtained «* and B:

™
"

1.3630577 and § = 1.628 . {2.5.7)

Thus, the parameter valﬁe €, converges to the critical
parameter value geometrically, asymptotically:
1 I R (2.5.8)

In the subcritical, critical and supercritical cases,
we calculated the residues R; and R; of the minimizing and
'ﬁinimaximizing.periodic orbits of rotation number pn/qn,
tpeir action difference Fn and the 8-coordinate Bn of the
nearest minimizing periodic point to the dominant symmetry
line{®=0). Near e', all the ninimaximizihg periodic point
tend to have a point on the dominant symmetry line and the
relations between periodic points and the other three sub-
dominant half-lines are shown in the table 1.1.3.1.

As shown in the figures 2.5.1 and 2.5.2, when e<e™ Ri
.approaches to zero and when e>e™ Ri diverge to im. The

results are shown in the tahles 2.5.2 and 2.5.3 in details.
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For the critical case, R: approaches to some finite value:

R: = 0,250
{2.5.9)
and

Therefbre, wﬁen the residues 6f nearby minimaximizing orbits
are ﬁearly 1,4, the invariant circle of rotation number 7_2
is on the edge of disappearence.

Figure 2.5.3 shows the flux Fn. In the critical case,

as shown in the table 2.5.5, the ratio Fn/Fn approaches

+1
to some value §E. Here § is the area-scaling factor of nearby .

islands and the observed value of E is ;

£ = 4,3390 . {2.5.10)

Therefore, Fn obeys a power law decay :
F -d do=10g_E = 3.0499 . (2.5.11)
n ~ qn » o ¥

In the subcritical case, as shown in the figure 2.5.3 and

the tablé 2.5.4, Fn approaches to zer6 at a rate Yaster than
that in the critical case. On the other hand, when e>e*, Fn
approaches to some nonzero value. In this caae,'the invariant
circle is broken into a cahtorua. As shown in the table 2.5.4,

at e=e” + 10_3. the observed flux through the cantorus is 1.23 x

10712,
The &-coordinate en of the nearest minimizing periodic

point to the dominant symmetry line approaches to zero when

eée*, as shown in the figure 2.5.4 and the table 2.5.5, In

187



the cr{tical case, en obeys a power law decay(see the table
2.5.6);
o~ q;’“ , Xe = 0.7211 . (2.5.12)

Therefore, the critical invariant circle is not differentiably
but topologically conjugate to uniform rotation. On-the other
hand, when e=e* + 10”3, the observed limiting value of o_ is
2,22 x 10”3, This is the half-width of the gap lying on the
éhninant symmetry. Since the forward an@ backward images of
this gap are also gaps, the ;nvariant circle is broken into
the cantorus with an infinitf of gaps.

Figure 2.5.5 shown o}bita near the Golden Mean invariant
.circle at E*. That 1hvariant 6irlce plays the role of a
complete barrier. For example, with an initial condition:
(6,I1)={(0.5,0.05) in the figqure 2.5.6, we have iterated the
map 105 times. As shown in that flgure; the orbit with that
initial condition is confined by the Golden Mean invariant
circle. On the other hand, when E>E*. extended chaos occurs,
as shown in the figure 2.5.7. The dark part in the figure
is formed by iterating the map 2-105 times with an initial
condition : (e,I)=(0.5,0.1).

To sum up, the Golden-Mean invariant circle persists

bhelow the critical parameter value in the map T (2.5.1} of

class-c2.
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n _ € . 6

n ' . n
3. 1.72791753
4 1.56942565 1.94941
5 © 1.48812316 X 1.59105
6 ' 1.43702338 1.78782
7 1.40844114 " 1.58694
8 - 1.39043019 17173
9 1.37994250 " 1.59142
10 1.37335234 1.66866
1 1.36940298 1.60707
12 1.36694548 1.64267
13 | 1.36544944 ~ 1.61811
14 1.36452488 1.63471
15 1.36395930 1.62591
16 1.36361144 1.62855
17 1.36339784 1.62802
18 1.36326664 1.62793
19 1.36318605 1.62815
20 1.36313655 1.62791
21 1.36310614

Tahle 2.5.1 : Parameter values Eﬁ for the nth conver-
gent minimaximizing periodic orbit to have residue 1

.and the convergence ratio Bn

189



. F:gut-e -‘2 5 Iz
' -mlm-maxt-muamg

&, a"’-l-aa ,
ae_m

< Resthue values RE|of Lhe nth comergepl

PeHaJ}c okbits | when g=&* -Aé'5
"esrxb\lﬁl)f JETIO‘EQJ L)"o A,U ’

} !

. T



n . E*—AG 7’E* - E*-l-AE
3 2.4275 x 1071 _.24383 2.4490 x 1071
4 2.5281 x 107} . 25468 2.5656 x 107}
5 2.4077 x 107} . 24370 2.4667 x 107}
6 2.4931 x 107t . 25409  2.s896 x.107t
7 2,3767 x 10~ t .24531  2.53189 x 10 '
8 2.3974 x 101 . 25216 2.6523 x 10~ !
9 2.2855 x 1071 .24819 2.6953 x 101
10 R; 2.1946 x 10”1t . 25084 2.8675 x 107t
11 2.0079 x 10™' . 24949  3,1015 x 107t
12 1.7606 x 10~ % . 25059 3.5711 x 1071
13 1.,4061 x 107} . 24996 4.4539 x 1071
14 9.7913 x 10”2 . 25002 5.&207 x 10”t
15 . 5.4693 x 10”2 .25009 1.1646
16 2,1251 x 10”2 . 25010 3.0983
17 4.5081 x 107 . 25008 1.5553 x 10l
18 4.2434 x 1073 . 24005 2.2475 x 102
19 3.3628 x 107> . 25005 1.8266 x 103
20 7.1529 x 1078 . 24999 2.3227 x 10’

Table 2.5.2 : Residue values R; of the nth convergent mini-

P . . . - : » * *
maximizing periodic orbits when € = € - ae , € , € 4 A€ ;

ae = 10"
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Fi&ul-ez 5.2.2

Resdue valueﬁ Rn.

mi'nim'larng. pel-fodnc - obbl-f:;ﬁ whe-n

i
1

|

of -Hle -nI:h ccmue;-éewb

€= e“'—Ae E.* a"'-l-ae,

|
}

192



» L »

n € =~ A€ € € + At

3 -2.4742 % 107% -. 24854 ~2,4965 x 1071
y -2,5107 x-10'1 -. 25301 -2.5496 x 10~ %
5 - -2.3960 x 10! -. 24263 . -2.4570 x 10”1
6 -2.5674 x 10° ! -. 26173 '-2.6682 x 10”7}
7 -2.4286 x 10771 -.25078 ~2.5897 x 1070
8 -2.4444 x 107 ~.25737 -2.70989 x 10~}
8 -2.3254 x 10"} ' -.25296 -2.7521 x 107}
10 R; -2.2321 x 10} -.25577 -2.9321 x 107}
11 - -2.0410 x 1071 ‘ -, 25455 -3.1787 x 1071
12 -1.7914 x 10" 1- -.25631 -3.6793 x 10"}
13 -1.4235 x 10°% -.25556 -4,6206 x 10”1
14 -9,8819 x 10} -.25529 -6.7336 x 10'1
15 -5.4992 x 10~2 -.25553  =1.2565

16 ~2.1332 x 1072 -. 25545 ~3,5658

17 -4.5270 x 10> -, 25544 ~2.0119 x 401

18 -4,2689 x 107" -. 25537 -3.1750 x 10%
18 -2.7293 x 10°° ~. 25539 ~2.6190 x 107

20 -1.1374 x 107> -.25533 -1.6148 x 10’

Table 2.5.3: Residue values R; of the nth convergent mini-

S . . . -3
mizing periodic orbits when €=ex -aA€, €% , €% +A€ ; a€ = 10 .
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n € - AE € € + A€
' -y -y -4
3 3,5759 x 10 3.5910 X 10 3,6061 X 10
’ -5 -5 : -5
3 8.7155 % 10 a8.7771 x 10~ 8.8391 x 10
. . -5 -5 . ' -5
5 1.9044 x 10 1.9267 x 10 1.9492 x 10
-6 -6 ’ -6
6 4.6220 x 10 4,7054 x 10 4,7902 % 10
-6 -6 -6
7 1.0143 x 10 1.0451 x 10 1.0768 x 10
-7 -7 -7
B 2.3514 x 10 2.4664 x 10 2.5868 X 10
‘ -8 ' -8 -8
9 5.1822 x 10 5.6032 x 10 6.0572 x 10
' -8 -8 -8
10 F_ 1.1489 x 10 1.3037 X 10 1.4788 X 10
-9 -9 -9
11 .2.4374 x 10 2.9936 x 10 3.6737 x 10
12 4.9606 x 10719  6.9317 x 1071° 9.6625 x 10 1°
13 3.2165 x 10 1Y 1.s936 x 10”10 2.7351 x 10710
14 1.4998 x 10711 3.6692 x 10 11 8.8038 x 10 11
15 1.9669 x 10”12 &,4643 x 1017 3.4528 x 10”1?
16 1.8020 x 10”3 1.9s04 x 107'?  1.8067 x 107!
- - : -
17 9.0380 x 10 1% 4. 4945 x 10713 1.3281 x 10 11
18 2.0163 x 1071®  1.03s6 x 10713 1.2377 x 10”11
19 3.3880 x 10~ % 2. 3868 x 107" 1.2316 x 10 11
20 2.22456 x 10°'?  s5.s006 x 10717

Tahle 2.5.4 : Action difference Fn between the nth convergent
minimaximizing and minimizing periodic orbits when € = e¥-ace '

* »* -3
. € , € +a&a€ ; ae = 10
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Fn/F

n+}

10 -

11

12
13
14
15
16
17
18

19

4.0913
4.5555
4.0946
4.5023
4.2374
4.4018
4.2980
4.3548
4.3188
4.3496
4.3433
4.3349
4.3397
4.3396
4.3400
4.3390

4.3391

Table 2.5.5 : Ratio of the fluxes Fn/ Pn#

critical case
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. * ) -
symmetry line when €=€ -a€,€ ,€ +A€ ; A€=10

198

3

n e* - ae e* E + Ag
| -1 -1 -l
3 1.5271 x 1075 1.5277 x 10 1.5284 x 107
4 1.0956 x 1071 1.0965 x 107" 1.0973 x 107}
) L2 2
5 7.6817 x 10 7.6921 x 10 7.7025 x 10
' -2 - -2 -2
6 5.4429 x 10 5.4555 x 10 5.4682 x 10
- -2 -2 ' —2
7 3.8269 x 10 3.8417 x 10 3.8566 x 10
8 2.7049 % 1072 2.7221 x 10°° 2.7396 x 1072
9 1.8993 x 1072 1.9192 x 10°2 1.9395 x 1072
A 2 -2 2
10 1.3353 x 10 1.3580 x 10 1.3817 x 10
11 9.3276 x 1073 9.5852 x 1072 9.8617 x 1073
12 6.4878 x 1073 6.7778 x 107> 7.1033 x 107>
13 4.4667 x 107 4.7885 x 1077 5.1768 x 107> -
14 3.0354 x 1073 3.3856 x 1075 3.8602 x 1073
15 2.0235 x 107> 2.3926 x 107> 2.9934 x 1077
16 1.3191 x 107> 1.6911 x 1072 2.4869 x 1072
17 8.4100 x 10~ 1.1953 x 1073 2.2715 x 1072
18 5.2738 x 107 8.4480 x 10°° 2.2258 x 1073
19 3.2790 x 107°  5.9709 x 1074 2.2227 x 107>
20 2.0318 x 1074 4.2201 x 107
Table 2.5.6 ; e-coordinate en of the nth convergent
minimizing periodic point nearest to the dominant



n . e¥-ne e ' e*rae
3 . 659001 . 68928 . 68854
yq .73787 . 73668 . 73548
S .71595 . 71396 .71195
6 . 73204 . 72883 . 72560
7 .72106 . 71590 .71066
8 .73472 . 72633 © L7177
9 - .73223 . 71877 . .70473
16 xI' - .7u553 . 72385 . 70080
11 . 75447 .72020 .68183
12 : . 77568 .72199 . .&5746
13 . 80278 . 72044 . 60986
14 .84270 L 72145 . 52845
15 .88913 . 72108 | . 38526
16 . 93543 L72112 ;19823
17 . 96976 .72113 . 42202 x_m'2
18 . 98576 .72114 2.8981 x 10°°>

19 . 89455 . 72117

* *
Table 2.5.7 : Exponent x? when e€=€ -A€, € , e®race .

%

n -
Xo = Qn(en/en+1)/ﬂpv ;o v={1+5"),/2,

-3
AE=10 .
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Figure 2.5.6 : A single orbit when € = €¥
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The next question is whether or not the critical behavior
of the invariant circle is the same as that of the Golden
~Mean invariant circle of class ¢’ (r>3).

We descrihe the scaling along and across the symmetry
lines for the critical invariant circle. We use symmetry
coordinates (X,Y). For S-symmetry, symmetry coordinates are 3
X=6 and Y=I+E/2QF(0), énd for TS-symmetry symmetry coordinates
are : X=e-I,/2, Y=I . In the symmetry coordinates s the sym-

metries are represented as (X,Y) o (X’,¥") = (-X+n,Y),ne Z.

Firstiy, we describe the scaling behavior near the domi-
nant half-line. ¥We call the periodic.point (D,Yn) on the
dominanf half—linq the dominant point. We measured the
position Yn of the dominant point. {Yn}—sequence converges.
geometrically to the invariant circle with ratio g. Here the

limit value of (Yn}-sequence is :

¥* = 0.405611110478107 , {2.5.13)

and the convergence ratio g is the limit value of {Bn}-u
sequence defined by an(vnul-yn)/(vn—vn+1)‘ This sequence
is shown in the table 2.5.8. The observed scaling factor
g along the dominant half-line is :

B-= ~- 3.0668 . : (2.5.14)

Therefore, Yn approaches to the invariant circle in a

nonanalytic fashiont

Y . -¥ : _ .
?E;%——E ~YTT | (2.5.15)
n” 'n+1

Yo = log_ il = 2.3288 .

Y
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This is consistent with i

’ »* ~¥a
iYnﬂY I~ qa, . {2.5.16)

The scaling bahavior across the dominant symmetry line can
be also studied by measuring the positions-(xn,Yﬂ) ot the
nearest point of the periodic orbit to the dominant half-
line. The convergence ratio « is the limit value of (mn)-

sequence defined by «_=X_ /X

n=X*n"*ns1” This sequence is included

in the table 2.5.9. The ohserved‘scaling factor « across
the dominant half-~line is :
o = - 1.4148 . {2.5.17)

This is consistent with :

IX 1 ~ q;"*' - %o = log dwl . (2.5.18)

Secondly, we.describe the Bcailné behaviors near the
three subhdominant half-lines. We call the periodic point
on the subdominant half-line the subdominant point: .In a
similar way, by measuring the positions qf the subhdominant
point and the neareat point to it, the scaling behaviors
can be studied. However the scalinga exhibhit *‘period-3’
behaviors unlike the scaling behaviors near the dominant
symmetry line. These hehaviors are shown in the tables 2.5.9
and 2.5.10. This ‘'period-3’ scaling behavior is directly
related to the fact that periodic points on each subdominant
symmetry line have a ‘'period-3’ routing pattern as shown in
the table 1.1.3.1. The 3-s8tep scaling factors 93 and «

3
along and across the dominant half-lineas are :
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93 = -16.859, ﬂ3 = =4,.8458 . : {2.5.19)

Note that 93 # 33; L # us aﬁd u3-33 = (u-B)s. Hence,
though the scalings along and across the symmetry half-lines
exhibit different behaviors, the area-scalings exhihif the
same behaviors. This is consistent with the fact that
the ratio of the fluxes Fn/Fn"'_1 approach to éome value E:
E = |x-B|. .
Finally, note ihat these critical behaviors are the

same as those ﬁf the Golden KAM circle In the analytic
standard map within numerical errof(ﬂhenxer'and Kadanoff,
1982, Mackay, 1982).

' To sum up, we‘show numerically that in a map of class-
CQ, the Goldén KAM circle persists below the critical
parameter value and the critical behaviros appear to be the
same as thosq in analytic maps. But, Herman(1983)has Cr
(r<3)-bounterexamples to Moser's twist theorem. So, for a
mép of class-cr(r<3), KAM circles may or may not exist,
depending on the map. It may be helpful to recall that a

‘Denjoy's theorem on a circle map f; 51 - 81 requires that

has first derivatives of bounded variations (Moser, 1973):
n

R z | £7(e, )-8, ) | £C*

p
i=1

for all finite sequences 0« eo £ ~es L en £ 1,

Then, T is topologically conjugéte to uniform rotation on
Sl. So, we guess that like the case of circle maps some
additional detailed conditions on the quality of perturbation

should be required in the case of 2-dim. area-preserving maps.
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n
y -3.0326 ~1.,4232
5 -3.0725 -1,4082"
6 -3.0469 -1.4191
7 -3.0735 e1.u125
8 -3.0630 -1.4174
9 -3,0658 ~1.4138
10 -3,0660 -1.4164
11 -3.0651 ~1.4146
12 Iaz.ossé -1.4157
13 ~3.0673 -1.4147
14 ~3.0680 -1.4150
15 ~3. 0661 -1.4148
16 ~3.0670 -1.4149
17 '-3.(567’0 -1.4148
18 -3.0669 -1;4148
19 -3.0668 ~-1.4149
20 -3. 0668 -1.4149

Table 2.5.8 Scaling factors Bn and un'along and

across the dominant symmetry line when e=e¥,
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n e=1/2 I1=26 I=206-1
y -2,0485 -3.3367 -2. 4447
5 -3.3876 -2.4215 ~2.0625
6 -2.4459 -2.0686 -3.3489"
7 ~2.0577 -3.3795 -2.4165
8 -3,3542 -2.4396 -2.0643
9 -2,4254 -2.0584 -3.3714

10 -2.0621 -3.3625 -2.4345

11 -3.3692 -2.4285 -2.0594

12 -2.4318 -2.0604 -3.3673

13 -2.0539 -3.3698 ~2.4291

14 -3.3678 -2.4305 -2.0597

15 -2.4306 -2.0596 ~3.3678

16 -2.0596 -3.3684 -2.4302

17 -3.3682 ~2.4303 ~2.0596

18 -2.4303 -2.0597 -3, 3681

19 ~2.0597 -3,.3679 -2.4304

20 -3.3679 -2.4303 -2.0597

Table 2.5.9 : Scaling factors Bn along the three

subdominant half-lines when € = e”
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n 0=1/2 “1=26 I=26-1
y ~1.7835 -1.6283 -1.7055
‘5 ;1.5101 ~1,7087 ~-1.7706
6 —1;6966 -1.7734 -1.6075
7 -1.7729 -1.6005 -1.7067
a ~1.6022 -1.6980 -1.7748
9 ~1.7065 -1.7722 -1.6038
10 -1.7747 ~1.6029 -1.7013
11 ~1.6039 ~1.,7042 -1.7735
12 ~1,7025 -1.7745 -1.6030
13 -1.7743 -1.6033 -1.7037
14 ~1.6032 ~1.7030 -1.7746
15 -1.7034 ~1.7741 3-1.5037
16 ~1.7743 -1.6034 -1.7033
17 ~1,6034 ~1.7032 ~1,7744
18 ~1.7033 -1.7743 ~1.6035
19 -1.7743 -1.6034 -1.7033
20 -1.6034 -1.7033 -1.7743

Table 2.5.10

¢! Scaling factors across the three

subhdominant half-lines when € = €
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CHAPTER 3. Summary and Discussion

We have studied two phenouena relatéd to periodic and
quasi-periodic orbits in aréa-preserving mapsa.

-Tﬁe first phenomenon is the infinitely neated structure
of iaslands which play the role of ‘trap’. ﬁq show that at
the accumulation point island chains of all classes exist and
théy have a self-similar atructure asynptotically'for 1/n-bi-
furcation, with n=3 to 6. It is also obpervedlthat the
limiting self-similar behaviors depend on n. For even n, the
pattern of periodic orbits repeats itself from one bifurcation
to-the next one, while for odd n to every other one. These
observations are related to the following observations. For
even n, the subdominant elliptic point and the dominant ellip-
tic point appeaf successaively as the claes C increases,re-
spectively , while for odd n they appear aIternafively as C
increases. Héwever, these observations are not proved ﬁathe-
matically. Indeed, even more limiting self-similar behaviors
exist near the accumulatiqn point. When we rescale not only
the dymamical variables but also the barameter witﬁ the re-
écaling factors of dynamic variables x and p , and the para-
meter rescaling factor & , thé pattern of periodic orbits also
exhibits the limiting self-similar behavior .

It may be worth while to compare the period-doubling
bifurcation with higher n-~tupling bifurcations(n>2). The
residue values R® for higher n-fupling bifurcation afe leas
‘than 1, while R* in the period-doubling bifurcation is

}.13588( Greene et al, 1581 ). So, for higher n-tupling
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bifﬁrcation, infinitely nested islands exist and near these
“islandx a stochastic orbit has a_long-timé correlations. That
is; fhese islands play the role of *trap' of a stochastic
orbhit. On thg other hand, at the accumulation point of 1/2-
hifurcation, no islands exist and thus the unstable orbits
_play tﬁe role of tscatterer’ of stochastic orﬁits,

we.also studied the limiting self-similar structure by a
simple approximﬁte renormal ization method, Tﬁe method we
enployed ig essentially a generalization of Helleman’s
original. idea(1580,15B3) which was used for 1,/2-bjifurcation

to the lowest order. As explained in 8 2.4, comparison to the

X} 44+1
quadratic approximants of Tn and T“ ylelds the accumulation

point p", the scaling factor x and 8, the bifurcation ratio &
and the universal residue value R*. Naturally, as ‘& increases,
the higher order approximation givés better values. Thus, the
.results obtained by this method agree well with'those-ohtained
bY.directly following bifurcation-sequences. We can also ob-
tain an approximate universal map since ét the accumulation
point, in the limit 14— w , ALt AT A= [ x 0 ] .-
. : ' o B

So, we show hpproximately that the limiting self-similar be~
haviors are universal. Hence, all maps lying on the critical
surface converge to the universal map T* under the renormaliza-
tion transformation N, and fhus they exhibit the same limiting
self-similar behaviors on longer time scales and smaller spa-
tial Bcaleg, Also, note that.thezlingarization'of the renor-

malization transforﬁation N, dN , has one essentially relevant
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éigenvalue.a. That is just the bifurcation ratio. So,only it
the residues R of a periodic orbhit is computed, then one can
say whether the map describing the phase flow near the period-
ic orbit lies above or below the critical surface in the
figure 2.4.1 as follows. The map lies above or below that cri-
tical surface according as R is larger 6r smhller than R™. For
higher n-tupling bifurcation (n > 2), in the subcritical case
periodic orbite of higher period are not born-yét. and in the
supercritical case periodic orbits of hiéher period have be-
come unstable already. In this way, one information of r*
y;élds a lot of information.

The second phenomenori we studied is the breakx-up of
invariant circles thch play the role of *dam’ under a rough
perturbation ;

We studied whether or not invariant c;fcles exist in a
map of class;cz. In this case, persistence of invariant
circles is not guaranteed by Moser' twist theorem, since the
sufficient critical smoothness of a map in the theorem is
nnow claaa-Cr( r > 3 ).

We showed numerically that a noble invariant circle of
rotation number 7-2 <Y=(1+5&)/2) persists below a critical
parameter value. 8o, the invariant circle playsﬁthé role of a
complete barrier to transport of stochastic orbits below the
critical parametér value. We also observed that the critical
behavior appears to be the same ag that in analytic maps. So,
they seem to be in the same universality class. However,

Herman(1983) has Cr( r<3 )-counterexample to Moser's twist
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theorem. So , for a map.of class-C (r < 3) invariant circies
may or may not exist, depending on the map. A similar phenb-
menon exists in circle maps. A theorem of Denjoy ( referred to
by Mackay , 1982) on a circle maﬁ requires the map to bave
first derivatives of bounded variations for the map to he
topoiagically'conjugate to uniform rotation qh 31, but it is
false for'cl-maps. S0, we guess fhat for invariant circles

in a map of clads-C'({ r<3 ) to exist, some additional detailed
‘conditions"on the quality of perturbtion should he required
lixe the case of circle naps.

Like the cases of bifurcations, the information of the
univers;l.residue R* gives us much information concerning the
phase flow. In order to use this, we first define neighboring
periodic orbits in terms of their rotation numbers as follows.
We define two rational rotation numbers, v1 and vz‘, to be

neighboring if they are expressed as

v1 =T mo , m1 y Trv o, mn ] = pl/ql s
and ‘
v2 = [ m, . m1 Pty D+ 1] = pz/q2 .

The first question is whether an invariant circle exists
hetween two neighboring periodic orbits. We expect that the
most robust invariant circle in the frequency interval

between Vl and v2 may have the rotation number

o0
v = [ mo, m1 y tre mn , (31,71 = (p2-T + pl)/(qg-T + ql).

where v = (1 + 5h Y2 .

Then , the invariant circle may or may not exist accerding as

the average residue R of the residues R1 and R2 of the two
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per;odiq orbits is larggr‘or snaller»thﬁn R* which is roughly
‘174, In fhia way, we obtained the rotation numberg of boundary
circles in the figure 2.1.2 ( see § 2.1 ). |

' In the way stated above..the universal residge vglues R*
of bifurcations and noble invar;ant circles give us mncn.in-
formation concgrninj the pPhase flow inxz—dim. area~preserving
maps. Also, ope'gan expect naturally that the long-time behav-
ior of stochastic‘orhits near islands may be governed by the
self-similar behavior of the infinitely nested structure of
islands and the critical houndary circle. Actually, the
self-similar behavior is directly related to the transition
proﬁahilitieé in a self-similar Markov tiree model which de-
scribes the transport‘of stochastic orbits near islands
{ Meiss and 0Ott , i985 }, and a long-time correlation of
stochastic orbits near islands is obtained in the model. In
this way, the universal residue value R*, the parameter re-
scaling factor 6 , and the rescaling factors of dynémic
variables , x and B‘ give much information of thé phase Tlow

in area-presgserving maps.
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