

韓國物理學會 會報

第 9 卷 第 2 號

Bulletin of the Korean Physical Society

Vol.9 No.2 October 1991

第 63 回 總會프로그램, 論文抄錄集

日 時：1991. 10. 25(金)～26(土)
場 所：全 北 大 學 校

社團
法人 韓 國 物 理 學 會
Korean Physical Society

1. Proceedings of the Conference on Frontiers of Quantum Monte Carlo, Los Alamos, 1985,
edited by J. E. Gubernatis [J. Stat. Phys. 43, (1986)]

F-18

이차원에서의 알갱이 충밀리기 흐름의 운동론. 김상락(경기대학교).

반발 계수(coefficient of restitution) e 와 표면 거칠기 계수(surface roughness coefficient) β 를 가지는 원판 알갱이 입자(granular particle)들로 구성된 이차원 계에 외부 충밀리기 변형력(shear stress)이 가해져서 정상 상태를 이루는 경우를 생각한다. 알갱이 입자들 사이의 비탄성과 표면 거칠기에 의해 흡어지기(dissipation)가 있어서 기존의 기체 분자 운동론을 수정하여야만 하고 그 결과로 새로운 형태의 수송 방정식과 구성 방정식(constitutive equation)을 얻게 된다. 알갱이 계의 압력, 충밀리기 응력, 압축률 인수(compressibility factor), 평균 스핀 각운동속도, 병진 알갱이 온도와 회전 알갱이 온도와의 비, 흡어지기 매개변수 R_t 등의 표현식을 구한다.

F-19

Period n-tuplings in coupled maps. Sang-Yoon Kim (Kangwon Nat'l Univ.) and H.Kook (CTP/Seoul Nat'l Univ.). Using a functional renormalization method, we study critical behaviors for period n-tuplings ($n \geq 2$) in two coupled maps. We have found three fixed maps of the renormalization transformation N for even n and five fixed maps for odd n . The number and values of the relevant eigenvalues of the linearized transformation of N depend on both the fixed maps and n .

F

F-20

Connectedness and clustering for adhesive sphere model of two-phase disordered media. M. S. Choi and S. B. Lee (Kyungpook Nat'l Univ.) We present computer simulation results of pair-connectedness and two-point cluster functions of two-phase random media consisted of the particles of adhesive sphere model. The pair-connectedness function $P(\mathbf{r}_1, \mathbf{r}_2)$ is defined as that the quantity $\rho^2 P(\mathbf{r}_1, \mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2$ represents the probability of finding two particles centered in volume elements $d\mathbf{r}_1$ and $d\mathbf{r}_2$ about \mathbf{r}_1 and \mathbf{r}_2 , respectively, and are physically connected. On the other hand, two-point cluster function $C_2(\mathbf{r}_1, \mathbf{r}_2)$ gives the probability of finding two points at positions \mathbf{r}_1 and \mathbf{r}_2 , in the same cluster of one of the phases. Data are compared with the analytical results from