第2卷 第1号

韓国物理学会 会報
Bulletin of the Korean Physical Society

Vol. 2 No. 1 April 1984

第48回 総会プログラム，論文抄録集

日 時：1984. 4. 28～29
場 所：国民大学校

韓国物理学会
Korean Physical Society
Universality of period-quintupling and period-sextupling bifurcations for area-preserving maps. Koo-Chul Lee and Sang-Yoon Kim (S.N.U.) and Duk-In Choi (KAIST).

We have studied numerically period-quintupling and period-sextupling cascades of periodic orbits of 2-dim. area-preserving maps. The period-quintupling δ_n^q sequence converges as $n \to \infty$, and the limit value is 20.048. Like the period-doubling bifurcation, the rescaling can be done at every other quintupling rather than a single quintupling and the rescaling factor along the symmetry line is -43.27 and the rescaling factor across the symmetry line is -75.70. Like the period-doubling and the period-quadrupling bifurcations, there is only one limit value for each of the period-sextupling δ_n^p, δ_n^q, and β_n^p sequences. These limit values are $\delta = 13.85$, $\alpha = -8.25$ and $\beta = 6.30$.

Monte Carlo Study of Potts Models in Random Fields. Jong Hoon Oh and Duk-In Choi (KAIST). The q-state Potts model is studied using Monte Carlo method in the presence of random fields, which locally prefer ordering of any one of q states. In d-dimensions, the transitions are expected to become first order for $q < q_c^r(d)$. As in the nonrandom case, mean-field theory still yields $q_c(d) = 2$ for all d. Recently Blankschtein et al. argued that fluctuations shift $q_c(d)$ into significantly higher value than nonrandom value, $q_c^r(d)$. For $q_c^r(d) < q < q_c(d)$ we thus expect random fields turn the discontinuous transitions into continuous ones. We investigated this argument using Monte Carlo method. At $d = 3$ case of $q = 3$ and 4 are tested. The case $q = 4$ at $d = 2$ is also studied.