한국물리학회

회보

BULLETIN OF THE KOREAN PHYSICAL SOCIETY

제76회총회 프로그램, 논문초록집

2000년 4월

사단법인 한국물리학회

THE KOREAN PHYSICAL SOCIETY
Dynamic stabilization in nonlinear oscillators

Kim Young-dae (Hanyang University) Kim Sang-bun (Korea University)

Dynamic stabilization of unstable periodic orbits in various nonlinear oscillators, such as a directly-driven pendulum, a parametrically-driven inverted pendulum, or Duffing-type oscillators with multi-well potential, is frequently observed but its mechanism has not been understood clearly. We present the results through numerical and experimental studies of some of the nonlinear oscillators that the dynamic stabilization occurs through a (subcritical or supercritical) pitchfork bifurcation of the unstable periodic orbits. We also suggest that such dynamic stabilization be a generic property of driven nonlinear oscillators with both the stable and unstable periodic orbits.

Super-lattice, rhombus, square, and hexagonal standing waves in magnetically driven ferrofluid surface

Park Jang-soo, Lee Ji-woo, Park Chang (Korea University)

Standing wave patterns that arise on the surface of ferrofluids by (single frequency) paramagnetic forcing with an AC magnetic field are investigated experimentally. Depending on the frequency and amplitude of the forcing, the system exhibits various patterns including a superlattice and subharmonic rhombuses as well as conventional harmonic hexagons and subharmonic squares. The superlattice arises in a bicritical situation where harmonic and subharmonic modes collide. The rhombic pattern arises due to the non-monotonic dispersion relation of a ferrofluid.

Quasi-Unit Cell Picture for Quasicrystals

Chung Hyun (Seoul National University)

Quasicrystals are solid with quasiperiodic translational order and crystallographically disallowed rotational symmetry. Their lattice structure has been mainly described as the three-dimensional generalization of the Penrose tiling. Recently, Gummelt found a covering with a single type of decagon prototile whose lattice structure is isomorphic to the Penrose tiling. Based on this covering, we propose the quasi-unit cell picture for constructing structural models for quasicrystals. Unlike Penrose tiling models, quasicrystal structure is described in terms of a single repeating unit in this picture. It is different from the unit-cell picture of crystals in the sense that quasi-unit cells overlap their neighbors. This picture is simpler than previous models since the entire atomic structure can be resolved by the atomic decoration of a single unit. In spite of its simplicity, quasi-unit cell picture provides more general atomic models than Penrose tiling picture.

Model for correlations in stock markets

Lee Dong-kwan (Seoul National University)

We propose a group model for correlations in stock markets. In this model it is assumed that the stock markets are composed of several groups, within which the stock price fluctuations are correlated. The spectral properties of empirical correlation matrices reported in [Phys. Rev. Lett. 83, 1467 (1999); Phys. Rev. Lett. 83, 1471 (1999)] are well understood from the model. It provides the connection between the spectral properties of the empirical correlation matrix and the structure of correlations in stock markets.

A Superconducting Mechanism Based On Two-Band Model with Kondo-Type Interaction

Kim Sang-bun, Kim Young-dae (Korea University)

It is shown that a Kondo-type interaction between the carrier and localized spins in the system with two bands can drive a superconductivity. Using the same calculational method as in Ref. 1, the superconducting transition temperature, resistivity above the transition temperature magnetic susceptibility are calculated. To relate our model to the high T_c cuprates,