

PROGRAM BOOK

www.netsci2016.net

International
School and Conference
on Network Science

NETSCI 2016

MAY 30 - JUNE 3, 2016

Seoul, South Korea

The·K Hotel
SEOUL

■ Organized by

IBS Institute for Basic Sciences

PS Center for Theoretical
Physics of Complex Systems

APCTP KIAS

CCSS SNU

CTP KOREA
UNIVERSITY

■ Sponsored by

SEUL METROPOLITAN
GOVERNMENT

engine
engine.snu.ac.kr

Power Difference in Power-Grid System

P120 Mi Jin Lee and Beom Jun Kim
Sungkyunkwan Univ., Korea

A Traffic Reliability Index based on Percolation Theory

P121 Limiao Zhang^{1,2}, Guanwen Zeng^{1,2}, and Daqing Li^{1,2}
¹Beihang Univ., China, ²Science and Technology on Reliability and Environmental Engineering Laboratory, China

Competition Between Layers in Multiplex Complex Networks based on Local Optimization

P122 JiuHua Zhao^{1,2} and Xiaofan Wang^{1,2}
¹Shanghai Jiao Tong Univ., China, ²Ministry of Education of China, China

Cascading Failures by Fluctuating Loads in Scale-Free Networks

P123 Kousuke Yakubo¹ and Shogo Mizutaka²
¹Hokkaido Univ., Japan, ²The Institute of Statistical Mathematics, Japan

Network Evolution and Understanding Human Gene-Phenotype Relationship

P124 Seong Kyu Han, Donghyo Kim, and Sanguk Kim
POSTECH, Korea

Robustness of the Metabolic Networks: The Impact of Enzymatic Gene Expression

P125 Gyeong-Gyun Ha¹ and Deok-Sun Lee²
¹Nat'l Meteorological Satellite Center, Korea, ²Inha Univ., Korea

Measuring Systemic Risk with the Revealed Correlation Network using Markov-Switching Multifractal Model

P126 Jisang Lee and Duk Hee Lee
KAIST, Korea

Q-Coloring and Generalized Conserved-Lattice Gas on Random Networks

P127 Wooseop Kwak, Sojeong Park, and Meesoon Ha
Chosun Univ., Korea

P128 Withdrawn

Effect of Network Architecture on Sparsely Synchronized Brain Rhythms in A Scale-Free Neural Network

P129 Sang-Yoon Kim¹ and Woochang Lim²
¹Institute for Computational Neuroscience, Korea, ²Daegu Nat'l Univ. of Education, Korea

Rapid Improvement of Robustness to Existing Networks without Optimal Algorithms

P130 Genki Ichinose¹, Yoshiki Satotani², and Toshihiro Tanizawa³
¹Shizuoka Univ., Japan, ²Anan College, Japan, ³Koichi College, Japan

A Novel Approach to Evaluate Community Detection Algorithms on Ground Truth

P131 Giulio Rossetti^{1,2}, Luca Pappalardo^{1,2}, Salvatore Rinzivillo², and Fosca Giannotti²
¹Univ. of Pisa, Italy, ²ISTI-CNR, Italy

Structural Transition of Financial Network Around Global Financial Crisis

P132 Ashadun Nob^{1,2}, Nam Jung¹, Tae Ho Lee¹, Le Anh Quang¹, and Jae Woo Lee¹
¹Inha Univ., Korea, ²Noakhali Science and Technology Univ., Bangladesh

Effects of Dimensionality and Heterogeneity on the Fluctuation in Complex Networks

P133 Hyung-Ha Yoo and Deok-Sun Lee
Inha Univ., Korea

Hierarchy and Modularity, the Two Organizing Mechanisms of Protests in SNS: the Case study of Rainbow Occupy Seoul City Hall and Smokestack Protest of Ssangyong Motor's Dismissed Workers

P134 Donghyun Kang
Seoul Nat'l Univ., Korea

Exploitation Competition in Plant-Pollinator Mutualistic Networks

P135 Seong Eun Maeng, Jae Woo Lee, and Deok-Sun Lee
Inha Univ., Korea

Percolation Transition on Multiplex Lattices

P136 Jeehye Choi¹, Byungjoon Min², and K.-I. Goh¹
¹Korea Univ., Korea, ²City College of New York, USA

Effect of Network Architecture on Sparsely Synchronized Brain Rhythms in A Scale-Free Neural Network

Sang-Yoon Kim and Woochang Lim

Institute for Computational Neuroscience and Department of Science Education,
Daegu National University of Education, Daegu 705-115, Korea

We consider a directed Barabási-Albert scale-free network model with symmetric preferential attachment with the same in- and out-degrees, and study emergence of sparsely synchronized rhythms for a fixed attachment degree in an inhibitory population of fast spiking Izhikevich interneurons. For a study on the fast sparsely synchronized rhythms, we fix J (synaptic inhibition strength) at a sufficiently large value, and investigate the population states by increasing D (noise intensity). For small D , full synchronization with the same population-rhythm frequency f_p and mean firing rate (MFR) f_i of individual neurons occurs, while for sufficiently large D partial synchronization with $f_p > \langle f_i \rangle$ ($\langle f_i \rangle$: ensemble-averaged MFR) appears due to intermittent discharge of individual neurons; particularly, the case of $f_p > 4\langle f_i \rangle$ is referred to as sparse synchronization. Only for the partial and sparse synchronization, MFRs and contributions of individual neuronal dynamics to population synchronization change depending on their degrees, unlike the case of full synchronization. Consequently, dynamics of individual neurons reveal the inhomogeneous network structure for the case of partial and sparse synchronization, which is in contrast to the case of statistically homogeneous random graphs and small-world networks. Finally, we investigate the effect of network architecture on sparse synchronization in the following three cases: (1) variation in the degree of symmetric attachment (2) asymmetric preferential attachment of new nodes with different in- and out-degrees (3) preferential attachment between pre-existing nodes (without addition of new nodes). In these three cases, both relation between network topology and sparse synchronization and contributions of individual dynamics to the sparse synchronization are discussed.