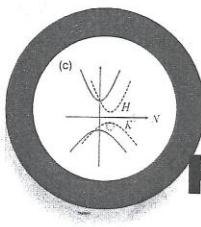


2016.10

제34권 제2호

Bulletin of the Korean Physical Society


한국 물리학회 회보

2016 가을 학술논문발표회 및 임시총회

2016.10. 19 (수) - 21(금)

광주 김대중컨벤션센터

KPS 한국물리학회
The Korean Physical Society

SESSION E

2016 October 20(Thu) 14:00–15:48

[E1-st] Biophysics II

2016, 10, 20 Thursday 14:00 – 15:36

좌장 : 정 영 균 한국과학기술정보연구원
Chair: JUNG Young-Kyun (KISTI)

E1.01(초) [14:00 - 14:24]

Quantifying superdiffusive transport in living cells: a few examples / Jae-Hyung Jeon* (Department of Physics, POSTECH)

E1.02(초) [14:24 - 14:48]

Phase Modulation of Hormonal Oscillations / 박동호¹, 송태근¹, HOANG Danh-Tai², XU Jin^{1,3}, 조정효^{*1,3} (¹Asia Pacific Center for Theoretical Physics, ²National Institute of Diabetes and Digestive and Kidney Diseases, NIH, USA, ³Department of Physics, POSTECH)

E1.03* [14:48 - 15:00]

Analysis of diffusion trajectories of anisotropic objects / 노승한¹, 이주연², 김용운¹ (KAIST 나노과학기술대학원, ²부산대학교 물리학과)

E1.04 [15:00 - 15:12]

Voltage Generation and Relaxation at the ITO-water interface / Yoonnam Jeon¹, Jong Kyun Moon¹, Myung Won Song^{1,2}, Hyuk Kyu Pak^{*1,2} (¹Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea, ²Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Kore)

E1.05 [15:12 - 15:24]

Emergence of Sparsely Synchronized Rhythms and Their Responses to External Stimuli in An Inhomogeneous Small-World Complex Neuronal Network / LIM Woochang^{*}, KIM Sang-Yoon (Institute for Computational Neuroscience, Daegu National University of Education)

E1.06 [15:24 - 15:36]

Cross-species essentiality landscape for the evolution of the metabolic networks / KIM Purin¹, LEE Deok-sun^{*2}, KAHNG Byungnam^{*1} (¹Department of Physics and Astronomy, Seoul National University, ²Department of Physics, Inha University)

[E2-op] Optical imaging and technology

2016, 10, 20 Thursday 14:00 – 15:36

Room: # 204

좌장 : 최 수 봉 인천대학교

Chair: CHOI Soo-Bong (Incheon National Univ.)

E2.01* [14:00 - 14:12]

Demonstration of Structured Magnetic Illumination Microscopy / LEE Dukhyung¹, KANG Taehee¹, KIHM Hyun Woo², KIM Dai-Sik^{*1} (¹Department of Physics and Astronomy and Center for Atom Scale Electromagnetism, Seoul Natl. Univ., ²Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon)

E2.02* [14:12 - 14:24]

Near-ultraviolet structural color in aluminum nanoantenna array / LEE Chun-Ho¹, KIM Youngrok², SONG Jung-Hwan¹, EE Ho-Seok¹, JEONG Kwang-Yong³, HWANG Min-Soo³, PARK Hong-Gyu³, LEE Takhee², SEO Min-Kyo^{*1} (¹Department of Physics Korea Advanced Institute of Science and Technology, ²Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, ³Department of Physics Korea University)

E2.03* [14:24 - 14:36]

Bio-inspired structural coloration realized by thin-film rolling technique / 한창현¹, 김한빛¹, 정현호¹, 전현수^{*1,2} (¹서울대학교 물리천문학부, ²서울대학교 생물물리 및 화학생물학과)

E2.04* [14:36 - 14:48]

시간역행 거울을 이용한 미세 광집속 / 박종찬, 박용근* (한국과학기술원 물리학과)

E2.05* [14:48 - 15:00]

초점가변렌즈를 이용한 구조조명 기반의 3차원 표면형상측정 방법 / 김주원¹, 허정무², 박호진², 엄종현¹, 엄주범³, 안재성³, 박안진³, 이병하^{*2} (¹광주과학기술원 의생명공학과, ²광주과학기술원 전기전자컴퓨터공학부, ³한국광기술원 광의료연구센터)

E2.06* [15:00 - 15:12]

Measurement of wafer morphology using interferometer for the overlay correction / 김재순^{*1}, 윤성민¹, 임승일¹, 최재준¹, 양한모¹, 정우성², 이윤기², 이재용³ (¹명지대학교 물리학과 NEMO Lab., ²AUROS Technology, ³한국표준과학연구원)

E2.07* [15:12 - 15:24]

반도체 웨이퍼 상의 결함 검출용 고효율 조명계의 애너모프적 접근에

2016 KPS Fall Meeting, 2016년 가을 학술논문발표회 및 임시총회
2016.10.19 – 2016.10.21

00814

Emergence of Sparsely Synchronized Rhythms and Their Responses to External Stimuli in An Inhomogeneous Small–World Complex Neuronal Network

LIM Woochang^{*}, KIM Sang–Yoon

Institute for Computational Neuroscience, Daegu National University of Education

^{*}wclim@icn.re.kr

Abstract:

By taking into consideration the inhomogeneous population of interneurons in real neural circuits, we consider an inhomogeneous small–world network (SWN) composed of inhibitory short–range (SR) and long–range (LR) interneurons, and investigate the effect of network architecture on emergence of sparsely synchronized rhythms by varying the fraction of LR interneurons p_{long} . The betweenness centralities of the LR and the SR interneurons (characterizing the potentiality in controlling communication between other interneurons) are distinctly different, although they have the same average in– and out–degrees (representing the potentiality in communication activity). Hence, in view of the betweenness, SWNs we consider are inhomogeneous, unlike the "canonical" Watts–Strogatz SWN with nearly same betweenness centralities. For small p_{long} , the average betweenness centrality of LR interneurons is much larger than that of SR interneurons. Hence, the load of communication traffic is much concentrated on a few LR interneurons. However, with further increase in p_{long} the number of LR connections (coming from LR interneurons) increases, and then the average betweenness centrality of LR interneurons decreases. Consequently, the average path length becomes shorter, and the load of communication traffic is less concentrated on LR interneurons, which leads to better efficiency of global communication between interneurons. Sparsely synchronized rhythms are thus found to emerge when passing a small critical value $p_{\text{long}}^{(c)} (\simeq 0.16)$. This transition from desynchronization to sparse synchronization is well characterized in terms of a realistic "thermodynamic" order parameter, and the degree of sparse synchronization is well measured in terms of a realistic "statistical–mechanical" spiking measure. These dynamical behaviors in the inhomogeneous SWN are also compared with those in the homogeneous Watts–Strogatz SWN, in connection with their network topologies. Particularly, we note that the main difference between the two types of SWNs lies in the distribution of betweenness centralities. Unlike the case of the Watts–Strogatz SWN, dynamical responses to external stimuli vary depending on the type of stimulated interneurons in the inhomogeneous SWN. We consider two cases of external time–periodic stimuli applied to sub–populations of LR and SR interneurons, respectively. Dynamical responses (such as synchronization suppression and enhancement) to these two cases of stimuli are studied and discussed in relation to the betweenness centralities of stimulated interneurons, representing the effectiveness for transfer of stimulation effect in the whole network.

Keywords:

Short–range and long–range interneurons, Inhomogeneous small–world network, Inhomogeneous betweenness centrality, Sparsely synchronized rhythms, Synchronization suppression and enhancement

