

The 5th International Conference on Cognitive Neurodynamics (ICCN2015)

Program & Abstract Book

Edited by
Wang Rubin
Pan Xiaochuan

June 3-7, 2015
Sanya, Hainan Province, China

June 6

Poster Session

16:30 - 18:30, 20:00-22:00, June 6

1-09-0003

Spiking Response of a Leaky Integrate-and-Fire Neuron Driven by Periodic Inputs

Junzi Wang, Xianfa Jiao

1-09-0005

Inputs affect periodic firing time of spikes in HR model

Jiaoyan Wang, Huaixing Li

1-09-0007

Synchronization of coupled neuronal network in cold-receptor model

Ying Du, Rubin Wang

1-09-0008

Analysis of Firing Pattern under External Electric Field in Chay Model

Bo Lu, Shenquan Liu and Xuanliang Liu

1-09-0009

The Role of Ion Channels in Firing Dynamics of a Two-Compartment Purkinje Cell Model

Jing Wang and Shenquan Liu

1-09-0010

A modeling research of single compartment and microcircuit in respiratory central pattern generator

Yingteng Zhang, Shenquan Liu, Dongsheng Xiong

1-09-0011

The Influence of Equilibrium Potential on the Mixed-mode Oscillations in a Modified Morris-Lecar Model

Xue Han and Shenquan Liu

1-10-0002

Modular and Global Sparse Synchronization in Clustered Small-World Networks of Inhibitory Fast Spiking

Izhikevich Interneurons

Sang-Yoon Kim and Woochang Lim

1-10-0004

Transition between synchronous behaviors of coupled neurons with reciprocal inhibition and time delay

Zhiguo Zhao, Huaguang Gu

Modular and Global Sparse Synchronization in Clustered Small-World Networks of Inhibitory Fast Spiking Izhikevich Interneurons

Sang-Yoon Kim and Woochang Lim

Computational Neuroscience Lab., Department of Science Education,

Daegu National University of Education, Daegu 705-115, Korea

S.-Y. Kim: sangyoonkim@dnue.ac.kr, W. Lim: woochanglim@dnue.ac.kr

Abstract. We consider a clustered network with small-world sub-networks of inhibitory fast spiking Izhikevich interneurons, and study the effect of inter-modular connection on emergence of fast sparsely synchronized rhythms by varying both the inter-modular coupling strength J_{inter} and the average number of inter-modular connections per interneuron $M_{Syn}^{(inter)}$. In contrast to the case of non-modular networks, two kinds of sparsely synchronized states such as modular and global synchronization are found. We employ a realistic cross-correlation modularity measure, representing the matching-degree between the instantaneous subpopulation spike rates of the sub-networks, and examine whether the sparse synchronization is global or modular. The degrees of the sparse synchronization may also be measured by using realistic statistical-mechanical spiking measures. It is expected that our results have important implications for the role of the brain plasticity which refers to the brain's ability to change its structure and function by modifying the strength or efficacy of synaptic transmission.

References

1. Wang, X.-J.: Neurophysiological and Computational Principles of Cortical Rhythms in Cognition. *Physiol. Rev.* 90 (2010) 1195-1268
2. Brunel, N., Hakim, V.: Sparsely Synchronized Neuronal Oscillations. *Chaos* 18 (2008) 015113 and references therein
3. Sporns, O.: Networks of the Brain. MIT Press, Cambridge (2011).
4. Hilgetag, C. C., Burns, G. A. P. C., O'Neill, M. A., Scannell, J. W., Young, M. P.: Anatomical Connectivity Defines The Organisation of Clusters of Cortical Areas in Macaque Monkey and Cat. *Phil. Trans. R. Soc. Lond. B* 355 (2000) 91-110
5. Watts, D. J., Strogatz, S. H.: Collective Dynamics of 'Small-World' Networks. *Nature* 393 (1998) 440-442
6. Kim, S.-Y., Lim, W.: Effect of Small-World Connectivity on Fast Sparsely Synchronized Cortical Rhythms. *Physica A* 421 (2015) 109-123
7. Izhikevich, E. M.: Dynamical Systems in Neuroscience. MIT Press, Cambridge (2007).
8. San Miguel, M., Toral, R.: Stochastic Effects in Physical Systems. In: Martinez, J., tiemann, R., Tirapegui, E. (eds.): Instabilities and Nonequilibrium Structures VI, kluwer Academic Publisher, Dordrecht (2000) 35-130.
9. Shimazaki, H., Shinomoto, S.: Kernel Bandwidth Optimization in Spike Rate Estimation. *J.comput. Neurosci.* 29 (2010) 171-182
10. Kim, S.-Y., Lim, W.: Realistic Thermodynamic and Statistical-Mechanical Measures for Neural Synchronization. *J. Neurosci. Methods* 226 (2014) 161-170