

Effect of Small-World Connectivity on Fast Sparsely Synchronized Cortical Rhythms

W. Lim and S.-Y. KIM

Computational Neuroscience Lab.

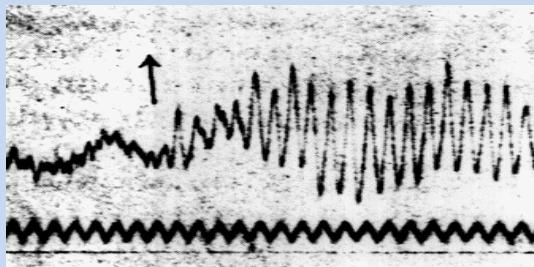
Daegu National University of Education

- Slow Brain Rhythms for the Silent Brain

Alpha Rhythm

[H. Berger, Arch. Psychiatr Nervenkr. 87, 527 (1929)]

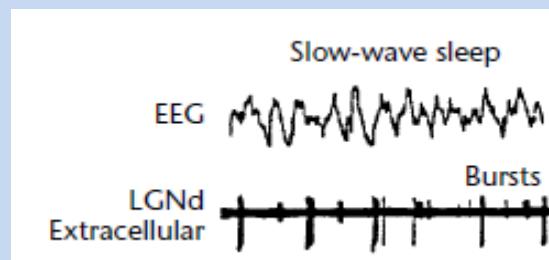
Slow brain rhythm (3~12Hz) with large amplitude during the contemplation with closing eyes



Sleep Spindle Rhythm

[M. Steriade, et. Al. J. Neurophysiol. 57, 260 (1987).]

Brain rhythm (7~14Hz) with large amplitude during deep sleep without dream

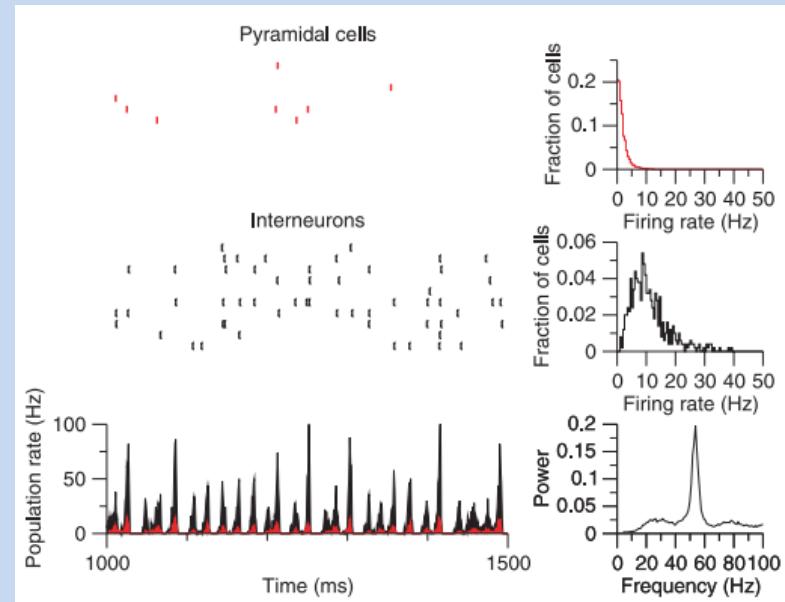


Fast Sparsely Synchronized Cortical Rhythms

- **Gamma Rhythm (30-100 Hz) in the Awake Behaving States**

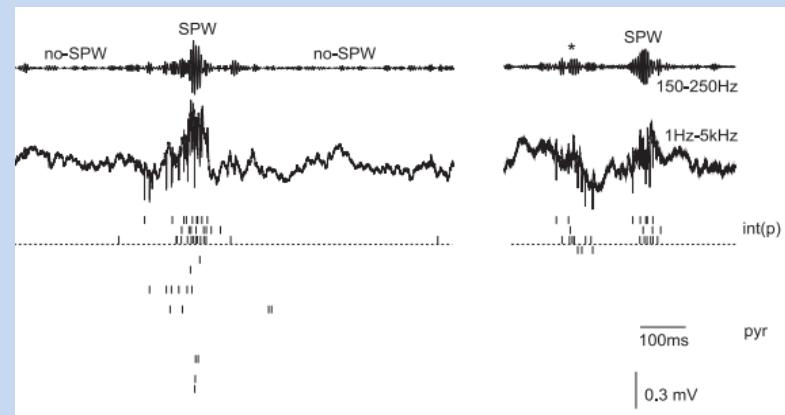
Fast Small-Amplitude Population Rhythm (55 Hz) with Stochastic and Intermittent Neural Discharges
(Interneuron: 2 Hz & Pyramidal Neuron: 10 Hz)

Associated with Diverse Cognitive Functions
(sensory perception, feature integration, selective attention, and memory formation)



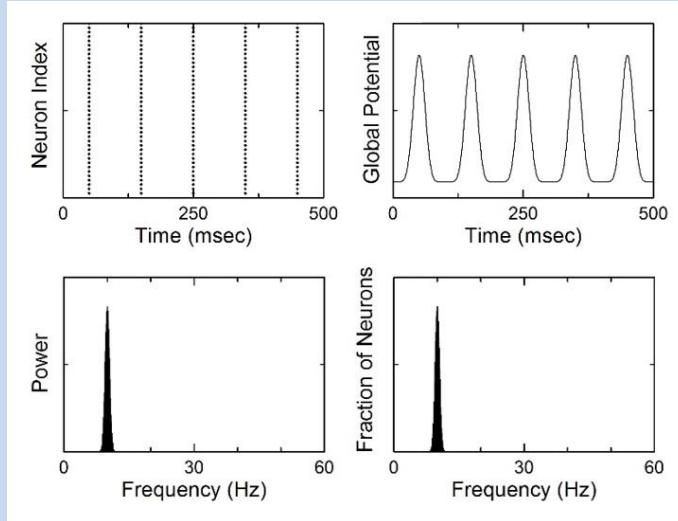
- **Sharp-Wave Ripples (100-200 Hz)**

- Sharp-Wave Ripples in the Hippocampus
Appearance during Slow-Wave Sleep
(Associated with Memory Consolidation)
- Sharp-Wave Ripples in the Cerebellum
Millisecond Synchrony between Purkinje Cells
→ Fine Motor Coordination



Sparse Synchronization vs. Full Synchronization

- Fully Synchronized Rhythms

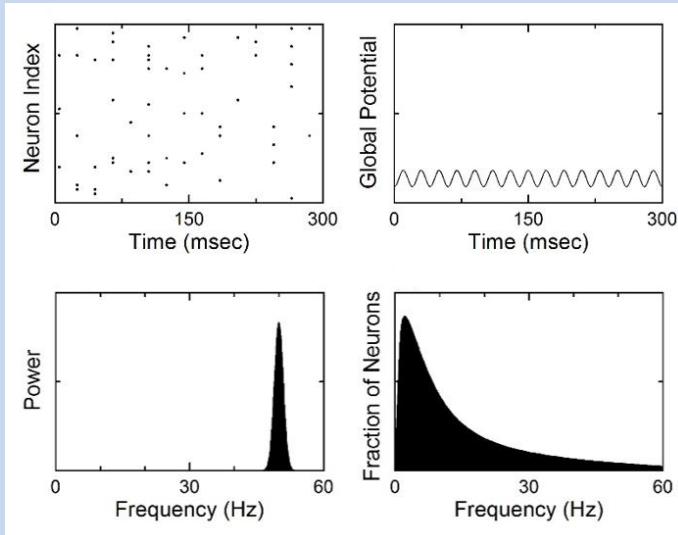


Individual Neurons: Regular Firings like Clocks

Large-Amplitude Population Rhythm via **Full Synchronization** of Individual Regular Firings

Investigation of This Huygens Mode of Full Synchronization Using the **Conventional Coupled (Clock-Like) Oscillator Model**

- Sparsely Synchronized Rhythms



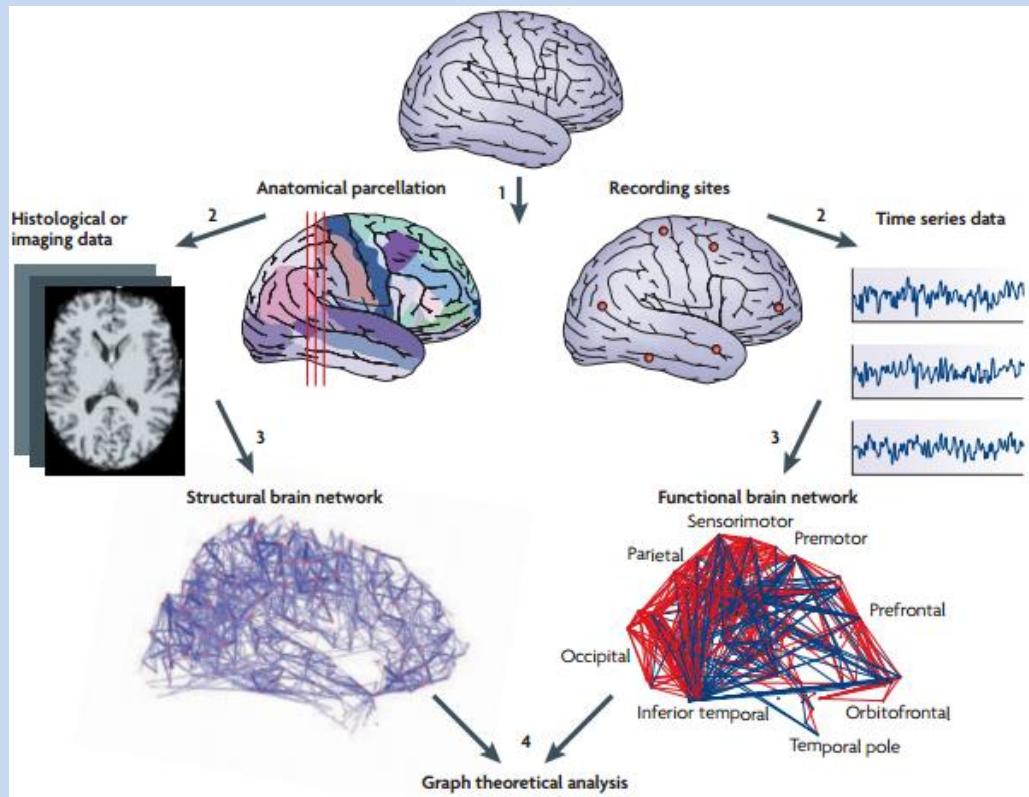
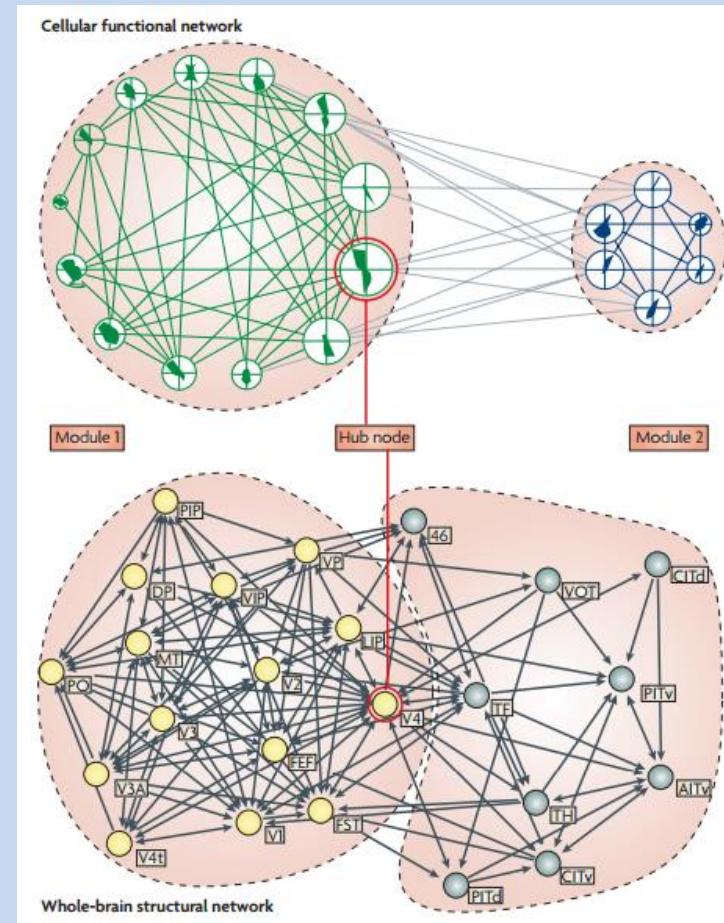
Individual Neurons: Intermittent and Stochastic Firings like Geiger Counters

Small-Amplitude Fast Population Rhythm via **Sparse Synchronization** of Individual Complex Firings

Investigation of Sparse Synchronization in Networks of **Coupled (Geiger-Counter-Like) Neurons** Exhibiting Complex Firing Patterns

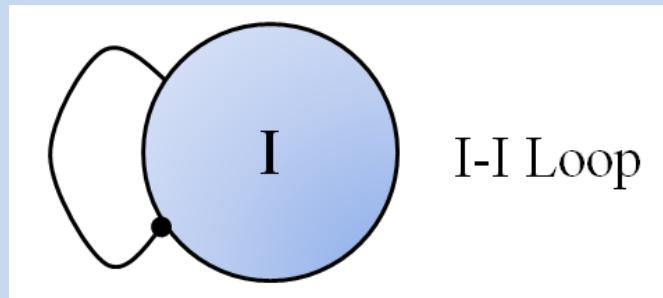
Complex Brain Network

Network Topology: Complex (Neither Regular Nor Random)



Network of Inhibitory Fast-Spiking (FS) Izhikevich Interneurons

- **Interneuronal Network (I-I Loop)**



Playing the role of the backbones of many brain rhythms by providing a synchronous oscillatory output to the principal cells

- **FS Izhikevich Interneuron**

Izhikevich Interneuron Model: not only biologically plausible (Hodgkin-Huxley neuron-like), but also computationally efficient (IF neuron-like)

Population Synchronization in the Random Network of FS Izhikevich Interneurons

- **Conventional Erdös-Renyi (ER) Random Graph**

Complex Connectivity in the Neural Circuits: Modeled by Using The ER Random Graph for $M_{syn}=50$

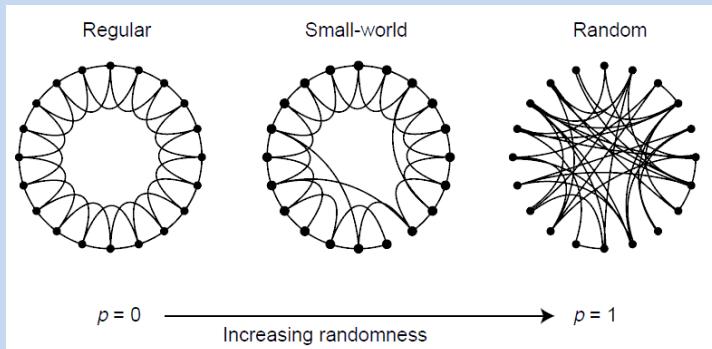
- **State Diagram in the J-D Plane for $I_{DC}=1500$**



Emergence of Sparsely Synchronized Rhythms in a Small World Network of FS Interneurons

Cortical Circuits: Neither Regular Nor Random

- Watts-Strogatz Small World Network



Interpolating between the Regular Lattice and the Random Graph via Rewiring

Start with directed regular ring lattice with N neurons where each neuron is coupled to its first k neighbors. Rewire each outward connection at random with probability p such that self-connections and duplicate connections are excluded.

- Asynchrony-Synchrony Transition

Investigation of Population Synchronization by Increasing the Rewiring Probability p for $J=1400$ & $D=500$

Thermodynamic Order Parameter:

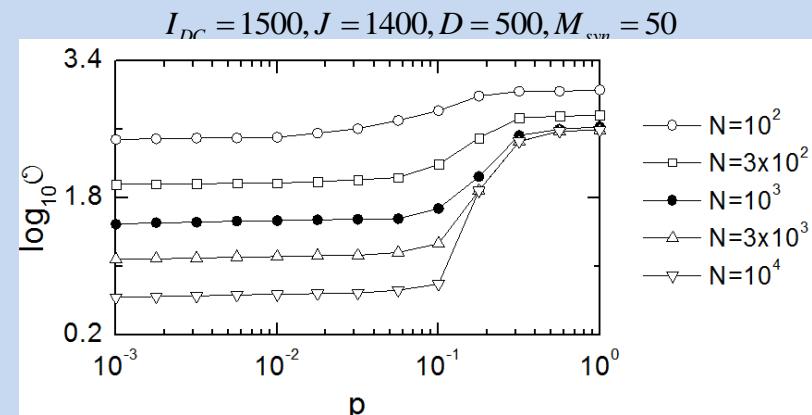
$$\mathcal{O} \equiv \overline{(\Delta V_G)^2} = \overline{(V_G(t) - \overline{V_G(t)})^2}$$

$$V_G(t) = \frac{1}{N} \sum_{i=1}^N v_i(t)$$

(Population-Averaged Membrane Potential)

Incoherent State: $N \rightarrow \infty$, then $\mathcal{O} \rightarrow 0$

Coherent State: $N \rightarrow \infty$, then $\mathcal{O} \rightarrow$ Non-zero value



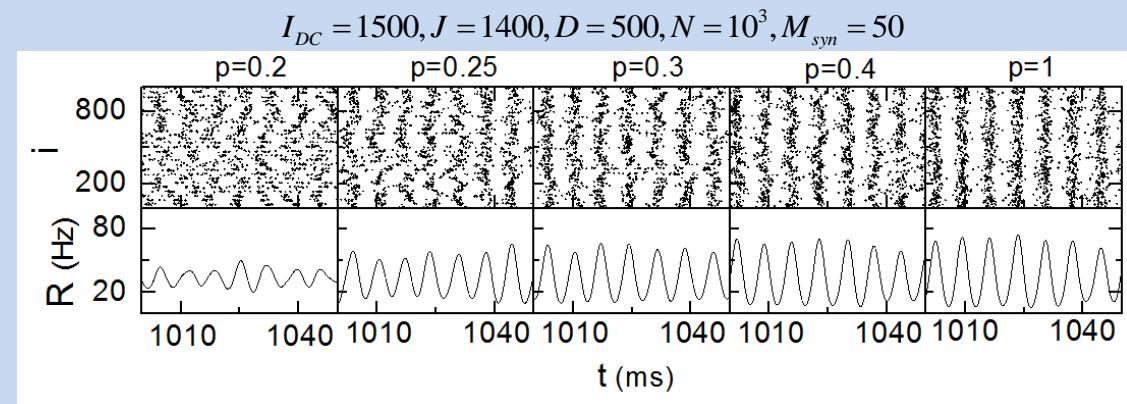
Occurrence of Population Synchronization for $p > p_{th}$ ($\simeq 0.12$)

Characterization of Sparsely Synchronized States

- **Raster Plot and Global Potential**

With increasing p , the zigzagness degree in the raster plot becomes reduced.

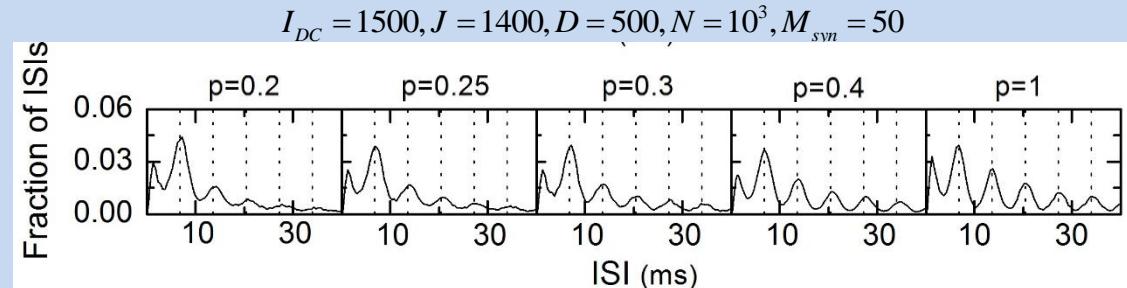
$p > p_{\max} (\sim 0.4)$: Raster plot composed of stripes without zigzag and nearly same pacing degree. Amplitude of V_G increases up to p_{\max} , and saturated. Appearance of Ultrafast Rhythm with $f_p = 147$ Hz



- **Interspike Interval Histograms**

Multiple peaks at multiples of the period of the global potential

Stochastic Phase Locking Leading to Stochastic Spike Skipping

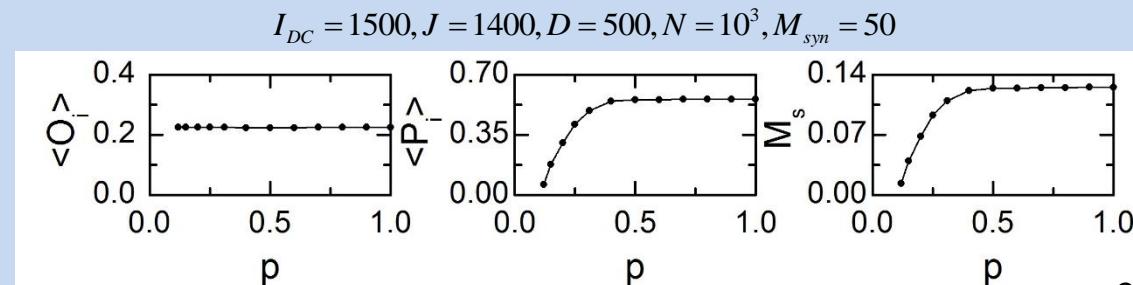


- **Statistical-Mechanical Spiking Measure**

Taking into Consideration the Occupation (O_i) and the Pacing Degrees (P_i) of Spikes in the Stripes of the Raster Plot

$$\rightarrow M_i = O_i \times P_i$$

$$\rightarrow M_s = \frac{1}{N_s} \sum_{i=1}^{N_s} M_i, \quad N_s : \text{No. of stripes}$$



Investigation of Population Synchronization in Terms of Spatial Correlation

- Spatial Cross-Correlation

Instantaneous individual spike rate

$$r_i(t) = \sum_{s=1}^{n_i} K_h(t - t_s^{(i)})$$

Spatial cross-correlation: $C_L = \frac{1}{N} \sum_{i=1}^N C_{i,i+L}(0)$

Horizontal stripe in the raster plot for $p=0$

- Regular oscillation of MFR
- Damped oscillation in C_L

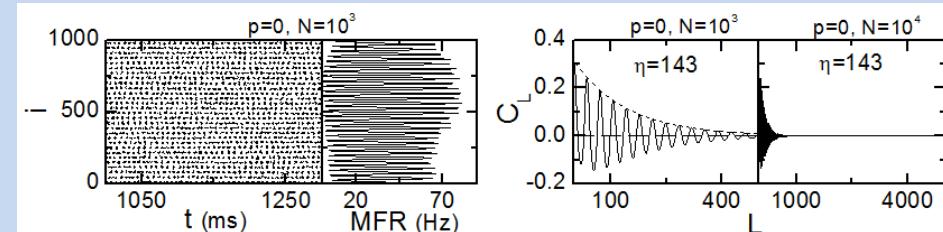
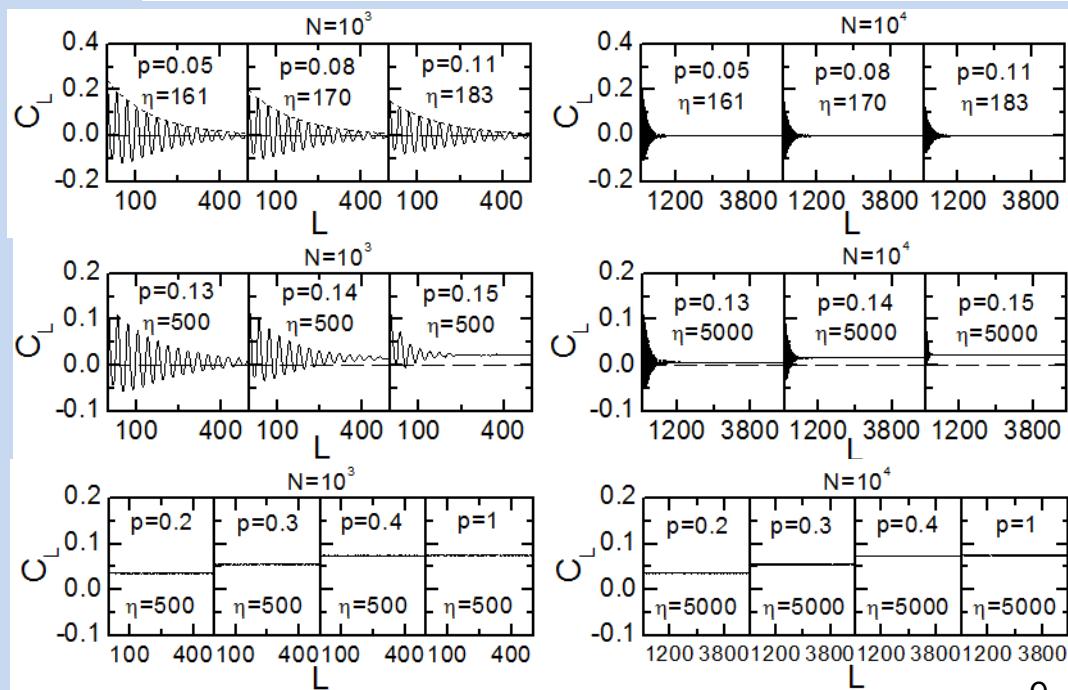
For the unsynchronization, C_L makes an oscillator decay to zero. As N increased, the normalized correlation length $\tilde{\eta} (= \eta/N)$ tends to zero. → No Global Synchronization Occurs.

For the synchronization, C_L becomes non-zero constant. Correlation length becomes $N/2$ covering the whole system.

- Whole system is composed of just one single synchronized block.
- Global synchronization occurs.

Cross-correlation function between r_i and r_j

$$C_{i,j}(\tau) = \frac{\overline{\Delta r_i(t + \tau) \Delta r_j(t)}}{\sqrt{\Delta r_i^2(t)} \sqrt{\Delta r_j^2(t)}}$$



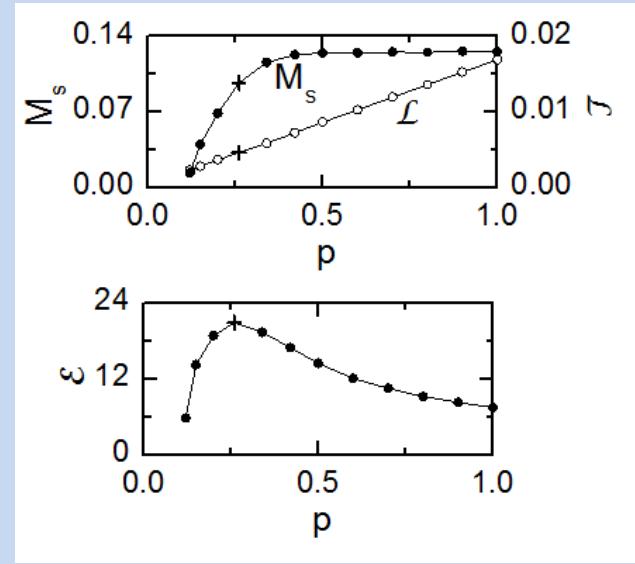
Economic Small-World Network

- **Synchrony Degree M_s and Wiring Length λ**

With increasing p , synchrony degree M_s is increased until $p=p_{\max}$ because global efficiency of information transfer becomes better.

Wiring length increases linearly with respect to p .
 → With increasing p , the wiring cost becomes expensive.

$$I_{DC} = 1500, J = 1400, D = 500, N = 10^3, M_{syn} = 50$$



- **Dynamical Efficiency Factor**

Tradeoff between Synchrony and Wiring Economy

$$\eta(p) = \frac{\text{Synchrony Degree}}{\text{Normalized Wiring Length}}$$

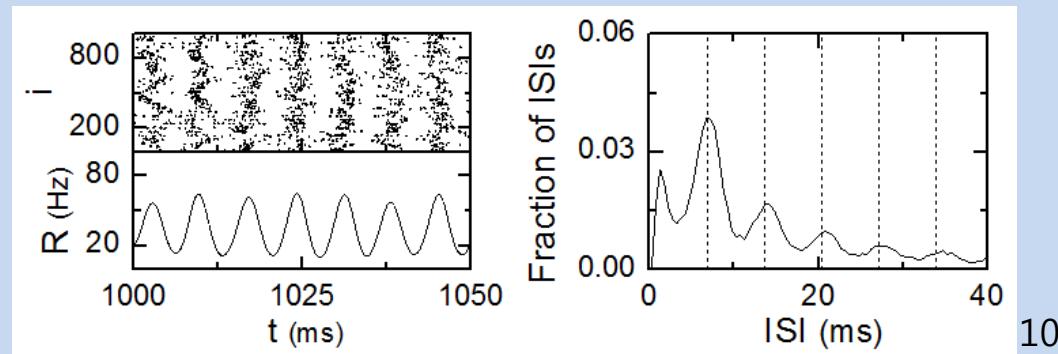
- **Optimal Sparsely-Synchronized Rhythm for $p=p^*_{DE}$**

Optimal Ultrafast Rhythm Emerges at A Minimal Wiring Cost in An Economic Small-World Network for $p=p^*_{DE}$ (≈ 0.31).

Optimal Sparsely-Synchronized Ultrafast Rhythm for $p=p^*_{DE}$ (≈ 0.31)

Raster plot with a zigzag pattern due to local clustering of spikes
 Regular oscillating global potential

$$I_{DC} = 1500, J = 1400, D = 500, p = 0.31, N = 10^3, M_{syn} = 50$$



Summary

- **Emergence of Fast Sparsely Synchronized Rhythm in A Small-World Network of Inhibitory Izhikevich FS Interneurons**

Regular Lattice of Izhikevich FS Interneurons ($p=0$)
→ Unsynchronized Population State

Occurrence of Ultrafast Sparsely Synchronized Rhythm as the Rewiring Probability Passes a Threshold p_{th} (≈ 0.12):
→ Population Rhythm ≈ 147 Hz (Small-Amplitude Ultrafast Sinusoidal Oscillation)

Intermittent and Irregular Discharge of Individual Interneurons at 33 Hz
(Geiger-Counter-Like Firings)

Emergence of Optimal Ultrafast Sparsely-Synchronized Rhythm at A Minimal Wiring Cost in An Economic Small-World Network for $p=p_{DE}^*$ (≈ 0.31)

$$I_{DC} = 1500, J = 1400, D = 500, p = 0.31, N = 10^3, M_{syn} = 50$$

