Bernstein Conference

Conference Booklet

Berlin, Sept 26-28

#BernsteinConference
W 95 Lorenz Gönnen, Julien Vitay, Fred H. Hamker
A statistical note on the detection of autoassociative
dynamics in hippocampal place-cell sequences

W 96 Richard Görler, Laurenz Wiskott, Sen Cheng
Using episodic memory to tune semantic representations for
perception

W 97 Olya Hakobyan, Sen Cheng
Modeling recognition memory as a decision process based on
generic memory modules

W 98 Anna-Maria Jürgensen, Hannes Rapp, Rinaldo Betkiewicz,
Bertram Gerber, Michael Schleyer, Martin Nawrot
From dense to sparse coding in a spiking model of the
Drosophila larva olfactory system

W 99 Ehsan Kakaei, Stepan Aleshin, Jochen Braun
Visual object recognition and temporal context studied by
complex novel 3D objects

W 100 David Kappel, Christian Tetzlaff, Florentin Wörgötter,
Christian Mayr
Hierarchical Priors for Rewiring Enable Efficient Learning in
Recurrent Networks

W 101 Sang-Yoon Kim, Woochang Lim
Effect of Inhibitory Spike-Timing-Dependent Plasticity on Fast
Sparingly Synchronized Brain Rhythms

W 102 Jan Hendrik Kirchner, Julijana Gjorgjieva
Dendritic plasticity rules in spontaneously active cortical
neurons

W 103 Claire Meissner-Bernard, Rainer Friedrich
Effects of balanced synaptic inputs on olfactory memory
networks

Sensory processing and perception

W 104 Franz Aiple, Julie Blumberg, Jiye G. Kim, Peter Reinacher,
Armin Brandt, Gabriel Kreiman, Andreas Schulze-Bonhage
Single unit responses to visual stimuli in human occipital lobe
neurones
Effect of Inhibitory Spike-Timing-Dependent Plasticity on Fast Sparsely Synchronized Brain Rhythms

Sang-Yoon Kim, Woochang Lim

1. Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu 42411, South Korea

We consider the Watts-Strogatz small-world network (SWN) consisting of inhibitory fast spiking Izhikevich interneurons. This inhibitory neuronal population has adaptive dynamic synaptic strengths governed by the inhibitory spike-timing-dependent plasticity (iSTDP) [1-3]. In previous works without iSTDP, fast sparsely synchronized rhythms, associated with diverse cognitive functions, were found to appear in a range of large noise intensities for fixed strong synaptic inhibition strengths. Here, we investigate the effect of iSTDP on fast sparse synchronization (FSS) by varying the noise intensity D. We employ an asymmetric anti-Hebbian time window for the iSTDP update rule [1-3] (which is in contrast to the Hebbian time window for the excitatory STDP (eSTDP) [4, 5] [see Fig. 1(a)]. Depending on values of D, population-averaged values of saturated synaptic inhibition strengths are potentiated (long-term potentiation (LTP)) or depressed (long-term depression (LTD)) [see Fig. 1(b)] in comparison with the initial mean value, and dispersions from the mean values of LTP/LTD are much increased when compared with the initial dispersion, independently of D. In most cases of LTD where the effect of mean LTD is dominant in comparison with the effect of dispersion, good synchronization (with higher spiking measure) is found to get better via LTD [compare Figs. 1(c)-1(e)] and 1(d1)-1(d3)], while bad synchronization (with lower spiking measure) is found to get worse via LTD [compare Figs. 1(c4) and 1(d4)]. This kind of Matthew effect in inhibitory synaptic plasticity is in contrast to that in excitatory synaptic plasticity where good (bad) synchronization gets better (worse) via LTD (LTD). Emergences of LTD and LTP of synaptic inhibition strengths are intensively investigated via a microscopic method based on the distributions of time delays between the pre- and the post-synaptic spike times. Furthermore, we also investigate the effects of network architecture on FSS by changing the rewiring probability p of the SWN in the presence of iSTDP.

![Figure 1: (a) Time window for the Anti-Hebbian iSTDP. Effects of iSTDP on FSS. (b) Time-evolutions of population-averaged synaptic strengths (\(J_{ij}\)) for various values of D. Raster plots of spikes (c1)-(c4) in the absence of iSTDP and (d1)-(d4) in the presence of iSTDP.](image)

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2016R017688).

References

Copyright: © 2018 Kim S, Lim W