

**Bernstein
Conference**

Conference Booklet

Berlin,
Sept 26-28

#BernsteinConference

W 95 **Lorenz Gönner, Julien Vitay, Fred H. Hamker**
A statistical note on the detection of autoassociative dynamics in hippocampal place-cell sequences

W 96 **Richard Görler, Laurenz Wiskott, Sen Cheng**
Using episodic memory to tune semantic representations for perception

W 97 **Olya Hakobyan, Sen Cheng**
Modeling recognition memory as a decision process based on generic memory modules

W 98 **Anna-Maria Jürgensen, Hannes Rapp, Rinaldo Betkiewicz, Bertram Gerber, Michael Schleyer, Martin Nawrot**
From dense to sparse coding in a spiking model of the *Drosophila* larva olfactory system

W 99 **Ehsan Kakaei, Stepan Aleshin, Jochen Braun**
Visual object recognition and temporal context studied by complex novel 3D objects

W 100 **David Kappel, Christian Tetzlaff, Florentin Wörgötter, Christian Mayr**
Hierarchical Priors for Rewiring Enable Efficient Learning in Recurrent Networks

W 101 **Sang-Yoon Kim, Woochang Lim**
Effect of Inhibitory Spike-Timing-Dependent Plasticity on Fast Sparsely Synchronized Brain Rhythms

W 102 **Jan Hendrik Kirchner, Julijana Gjorgjieva**
Dendritic plasticity rules in spontaneously active cortical neurons

W 103 **Claire Meissner-Bernard, Rainer Friedrich**
Effects of balanced synaptic inputs on olfactory memory networks

Sensory processing and perception

W 104 **Franz Aiple, Julie Blumberg, Jiye G. Kim, Peter Reinacher, Armin Brandt, Gabriel Kreiman, Andreas Schulze-Bonhage**
Single unit responses to visual stimuli in human occipital lobe neurones

Effect of Inhibitory Spike-Timing-Dependent Plasticity on Fast Sparsely Synchronized Brain Rhythms

Sang-Yoon Kim ¹, Woochang Lim ¹

¹. Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu 42411, South Korea

We consider the Watts-Strogatz small-world network (SWN) consisting of inhibitory fast spiking Izhikevich interneurons. This inhibitory neuronal population has adaptive dynamic synaptic strengths governed by the inhibitory spike-timing-dependent plasticity (iSTDP) [1-3]. In previous works without iSTDP, fast sparsely synchronized rhythms, associated with diverse cognitive functions, were found to appear in a range of large noise intensities for fixed strong synaptic inhibition strengths. Here, we investigate the effect of iSTDP on fast sparse synchronization (FSS) by varying the noise intensity D . We employ an asymmetric anti-Hebbian time window for the iSTDP update rule [1-3] (which is in contrast to the Hebbian time window for the excitatory STDP (eSTDP) [4, 5]) [see Fig. 1(a)]. Depending on values of D , population-averaged values of saturated synaptic inhibition strengths are potentiated [long-term potentiation (LTP)] or depressed [long-term depression (LTD)] [see Fig. 1(b)] in comparison with the initial mean value, and dispersions from the mean values of LTP/LTD are much increased when compared with the initial dispersion, independently of D . In most cases of LTD where the effect of mean LTD is dominant in comparison with the effect of dispersion, good synchronization (with higher spiking measure) is found to get better via LTD [compare Figs. 1(c1)-1(c3) and 1(d1)-1(d3)], while bad synchronization (with lower spiking measure) is found to get worse via LTP [compare Figs. 1(c4) and 1(d4)]. This kind of Matthew effect in inhibitory synaptic plasticity is in contrast to that in excitatory synaptic plasticity where good (bad) synchronization gets better (worse) via LTP (LTD). Emergences of LTD and LTP of synaptic inhibition strengths are intensively investigated via a microscopic method based on the distributions of time delays between the pre- and the post-synaptic spike times. Furthermore, we also investigate the effects of network architecture on FSS by changing the rewiring probability p of the SWN in the presence of iSTDP.

Figure 1: (a) Time window for the Anti-Hebbian iSTDP. Effects of iSTDP on FSS. (b) Time-evolutions of population-averaged synaptic strengths (J_{ij}) for various values of D . Raster plots of spikes (c1)-(c4) in the absence of iSTDP and (d1)-(d4) in the presence of iSTDP.

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 20162007688).

References

1. M. A. J. Lourens, B. C. Schwab, J. A. Nirody, H. G. E. Meijer, and S. A. van Gils, "Exploiting pallidal plasticity for stimulation in Parkinson's disease," *J. Neural Eng.* 12, 026005 (2015).
2. O. V. Popovych and P. A. Tass, "Desynchronizing electrical and sensory coordinated reset neuromodulation," *Front. Hum. Neurosci.* 6, 58 (2012).
3. S.-Y. Kim and W. Lim, "Effect of inhibitory spike-timing-dependent plasticity on fast sparsely synchronized rhythms in a small-world neuronal network," *bioRxiv*: DOI:10.1101/321547. Accepted for the publication in the *Neural Netw.* (2018).
4. S. Song, K. D. Miller, and L. F. Abbott, "Competitive Hebbian learning through spike-timing-dependent plasticity synaptic plasticity," *Nat. Neurosci.* 3, 919-926 (2000).
5. S.-Y. Kim and W. Lim, "Stochastic spike synchronization in a small-world neural network with spike-timing-dependent plasticity," *Neural Netw.* 97, 92-106 (2018).