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BACKGROUND

e Fast Sparsely Synchronized Brain Rhythms
- Population level: Fast synchronous oscillations
[e.g. gamma rhythm (30~100Hz) and sharp-wave ripple (100~200Hz)]

- Cellular level: Stochastic and intermittent discharges

- Associated with diverse cognitive functions [e.g., sensory perception, feature integration, selective
attention, and memory formation and consolidation]

- Previous works of Brunel et al.2: Developed a framework appropriate for fast sparse synchronization
in global and random networks. But, realistic brain networks: neither regular nor random

e Scale-Free Networks (SFNSs)
- Scale-Free Structure of Real Brain: Rat hippocampal networks and human brain functional networks have
been revealed to show power-law degree distribution (i.e., scale-free property)
- SFNs: Inhomogeneous networks with a few “Hubs” (i.e., supernodes)
cf., Random graphs and Small-World networks: Statistically homogeneous networks
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SPECIFIC AIMS

e To Investigate Emergence of Sparsely Synchronized Brain Rhythms in SFNs by Varying
J (Synaptic Inhibition Strength) and D (Noise Intensity)

e To Study The Effect of Network Architecture on Sparse Synchronization by Varying (a) the degree of
symmetric attachment, (b) the degree of asymmetric attachment, and (c) the degree of
attachment between pre-existing nodes

3. Synchronization-Unsynchronization Transition

e Realistic Thermodynamic Order Parameter
Realistic thermodynamics order parameter O:
Representing the time-averaged fluctuation of the IPSR R(t)
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For the synchronized (unsynchronized) state, O approaches non-zero

(zero) limit values in the thermodynamic limit of N—co. o N
(PAms ™)

When passing the threshold D" (=759), a transition to unsynchronization occurs.

- Synchronized State

Sparse stripes are formed in the raster plot
R(t) shows regular oscillation

- Unsynchronized State

Sparse spikes are scattered in the raster plot
R(t) becomes nearly stationary
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METHODS

Scale-Free Networks

e Evolved via two independent a- and B-processes:
- a-process

o-process p-process
Corresponding to a directed version of the Barabasi-Albert
(B-A) model (i.e., growth and preferential directed ®x\ . »@ @f’ ‘\@
attachment) : . ) : :

- B-process #',,/’\;_ @_H
Preferential attachment between pre-existing nodes without [Medges [ edges L

L edges
adding new nodes

e Composed of N Inhibitory Izhikevish Fast Spiking Interneurons#

RESULTS

1. State Diagram in the J-D Plane

[1-4:The Directed B-A SFN with Symmetric Preferential Attachment (1. =1500, I =11 =1 =25 )]
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4. Characterization of Degree of Sparse Synchronization

e Realistic Statistical-Mechanical Spiking Measure®

- Statistical-Mechanical Spiking Measure M, : Given by the product of the occupation and the pacing degrees
of spikes in the raster plot.

- Occupation degree <O;>: representing the average density of stripes in the raster plot
- Pacing degree <P, > : representing the average smearing of stripes in the raster plot
(average contribution of all microscopic spikes to the instantaneous population spike rate)

With increasing D,
<O,;>: drops abruptly from 1 just after the break-up of the full synchronization, and then it saturates to
a non-zero limit. <P;>: decreases monotonically to zero after the break-up of the full synchronization.
= M, : abruptly drops just after the break-up of the full synchronization and then slowly decreases to zero.
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6. Effect of The Asymmetric Parameter Al on Sparse Synchronization
(|Sn) = |a +A|a, |(§°u0 =1 _—-Al , and |a =25 —)|Sn) + |(§°m) =2l =constant)
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. i For J > 173, the full synchronization is developed into

2 sl Partial s partial synchronization, and tnen_the partial synchronization
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e T 200 doesrmroesnd | 7500 [T =1500" k " J=2000 1

0 Full Slync. . : : K’ L L ,,jf”’w( M N .,l 000005

+=100 |- P - o L -

0 1000 2000 3000 v s ) _

J @) N i wmw

30 140 200 700 200 600 100 500
D (pAms'®
2. Fast Sparse Synchronization
(2-4: J =1500)
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5. Effect of The Symmetric Attachment Deqgree l, on Sparse Synchronization

e Effect of I, on the Network Topology AL =20 1225 1740 145
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e Effect of I ,on the Population Dynamics

As |, is increased, occupation degree increases very slowly and pacing degree increases thanks to the
increased number of total connections — Statistical-mechanical spiking measure M increases.
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7. Effect of B-process on Sparse Synchronization
(B: occurrence probability of the B-process)

o Effect of B on the Network Topology 300
As [ is increased, secondary hub group is intensified, which
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DISCUSSIONS

e Investigated Emergence of Sparsely Synchronized Rhythms in SFNs
Appearance of Sparse Synchronization for large J and large D

e Sparse Synchronization vs. Full Synchronization
For the case of sparse synchronization, contributions of individual dynamics to population
synchronization vary depending on degrees (i.e., hub and peripheral groups), unlike the full
synchronization — Revealing the inhomogeneous network structure

e Effect of Network Architecture on Sparse Synchronization
Not only L, and C, (affecting global communication), but also in-degree distribution (affecting
individual dynamics) are important network factors to determine the synchronization degree.
— A harmony between these network factors is essential for effective synchronization.
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