

Thermodynamic and Statistical-Mechanical Measures for Synchronization of Bursting Neurons

Woochang Lim and Sang-Yoon Kim

Computational Neuroscience Lab., Department of Science Education, Daegu National University of Education, S. Korea

Introduction

Burstings with the Slow and Fast Timescales

Bursting: Neuronal activity alternates, on a slow timescale, between a silent phase and an active (bursting) phase of fast repetitive spikings
Representative examples of bursting neurons: chattering neurons in the cortex, thalamocortical relay neurons, thalamic reticular neurons, hippocampal pyramidal neurons, Purkinje cells in the cerebellum, pancreatic β -cells, and respiratory neurons in pre-Botzinger complex

Synchronization of Bursting Neurons

Two Different Synchronization Patterns Due to the Slow and Fast Timescales of Bursting Activity

Burst Synchronization: Synchrony on the Slow Bursting Timescale

Temporal coherence between the active phase (bursting) onset or offset times of bursting neurons

Spike Synchronization: Synchrony on the Fast Spiking Timescale

Temporal coherence between intraburst spikes fired by bursting neurons in their respective active phases

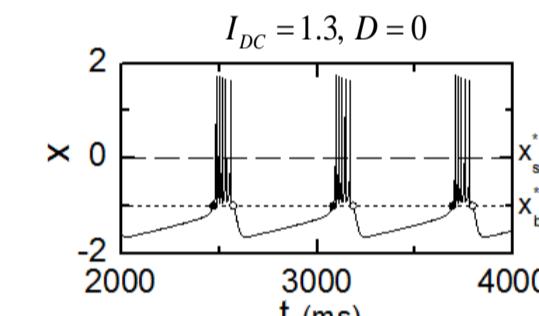
Inhibitory Population of Bursting Neurons

$$\begin{aligned} \frac{dx_i}{dt} &= y_i - ax_i^3 + bx_i^2 - z_i + I_{DC} + D\xi_i - I_{syn,i}, \\ \frac{dy_i}{dt} &= c - dx_i^2 - y_i, \quad \frac{dz_i}{dt} = r[s(x_i - x_o) - z_i], \\ \frac{dg_i}{dt} &= \alpha g_\infty(x_i)(1 - g_i) - \beta g_i, \quad i = 1, \dots, N, \\ I_{syn,i} &= \frac{J}{N-1} \sum_{j \neq i}^N g_j(t)(x_i - X_{syn}), \quad g_\infty(x_i) = 1/[1 + e^{-(x_i - x_s^*)\delta}]. \end{aligned}$$

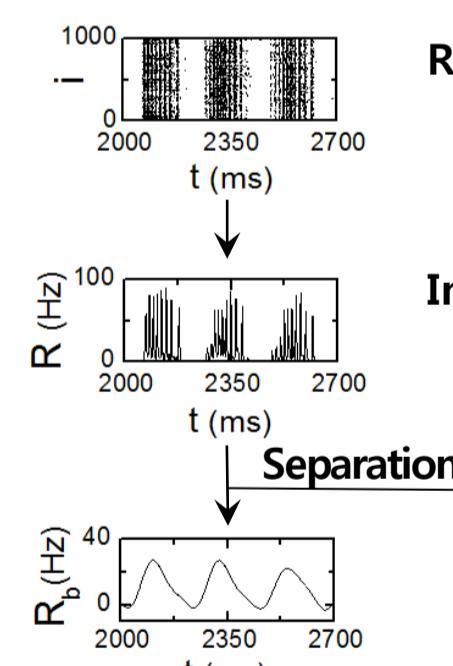
Parameters in the single Hindmarsh-Rose (HR) neuron

$$a = 1, b = 3, c = 1, d = 5, r = 0.001, s = 4, x_o = -1.6$$

Parameters for the synaptic current

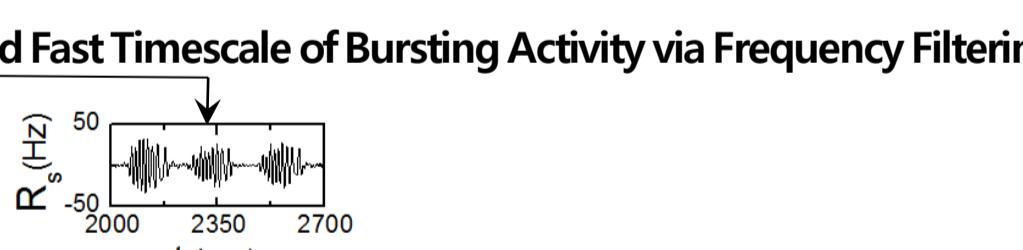

$$X_{syn} = -2, x_s^* = 0, \delta = 30, \alpha = 10 \text{ ms}^{-1}, \beta = 0.1 \text{ ms}^{-1}$$

Bursting Activity of the Single HR Neuron


Transition to a bursting state occurs for $I_{DC}^* \sim 1.26$

Dotted horizontal line ($x_b^* = -1$): bursting threshold
(solid & open circles: bursting onset & offset times)

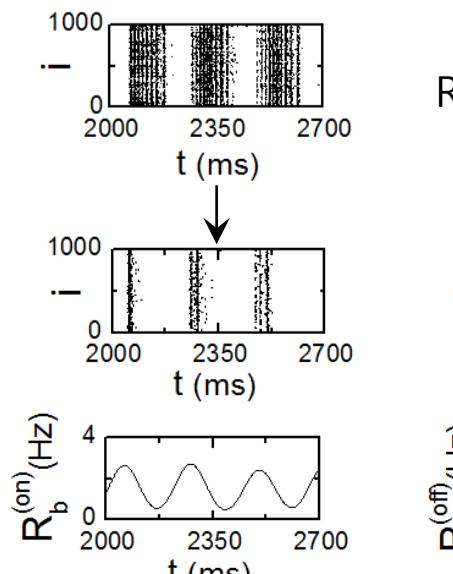
Dashed horizontal line ($x_s^* = 0$): spiking threshold



Characterization of Burst and Spike Synchronizations via Separation of the Slow (Bursting) and Fast (Spiking) Timescales

Raster Plot of Neural Spikes:
Population synchronization may be well visualized.
Obtained in experiments

Instantaneous Population Firing Rate (IPFR) R :
Describing the population behaviors


Instantaneous Population Bursting Rate (IPBR) R_b

Describing the Slow Bursting Behavior

Instantaneous Population Spiking Rate (IPSR) R_s :
Describing the Fast Spiking Behavior

Characterization of Burst Synchronization Based on Bursting Onset and Offset Times

Raster Plot of Neural Spikes

Raster Plots of Active Phase (Bursting) Onset or Offset Times:
More direct visualization of bursting behavior

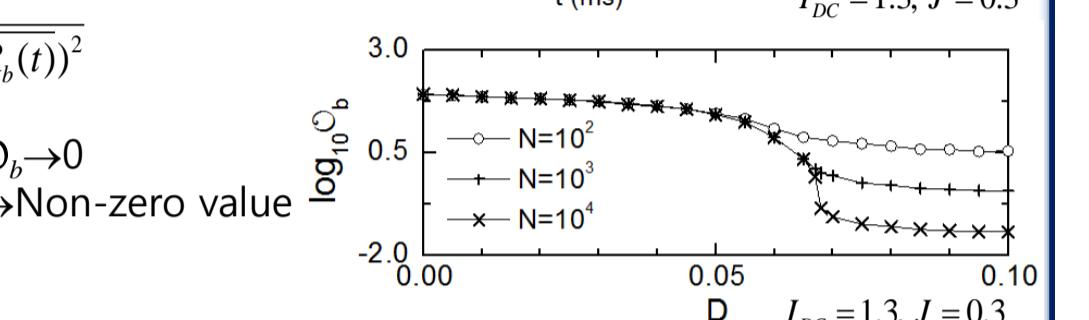
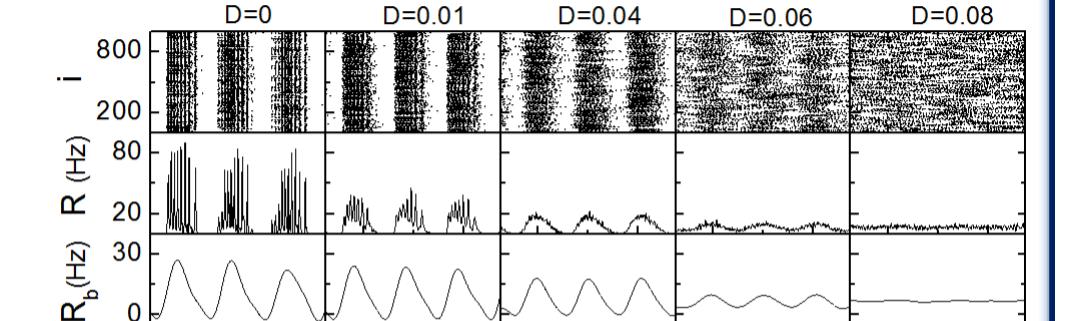
Instantaneous Population Bursting Rates (IPBRs) for Active Phase Onset Time $R_b^{(on)}$ and Offset Time $R_b^{(off)}$

Determination of Threshold for Bursting Transition via Thermodynamics Bursting Order Parameter

Thermodynamic Bursting Order Parameter Based on R_b

IPBR R_b via low-pass filtering ($f_c = 10 \text{ Hz}$)

As D is increased, bursting bands in the raster plots becomes smeared and overlap.
→ Amplitude of R_b decreases.

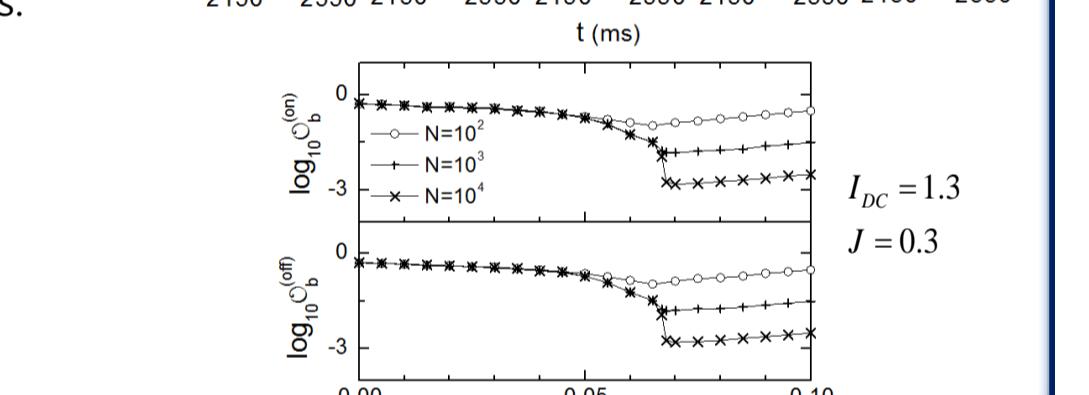
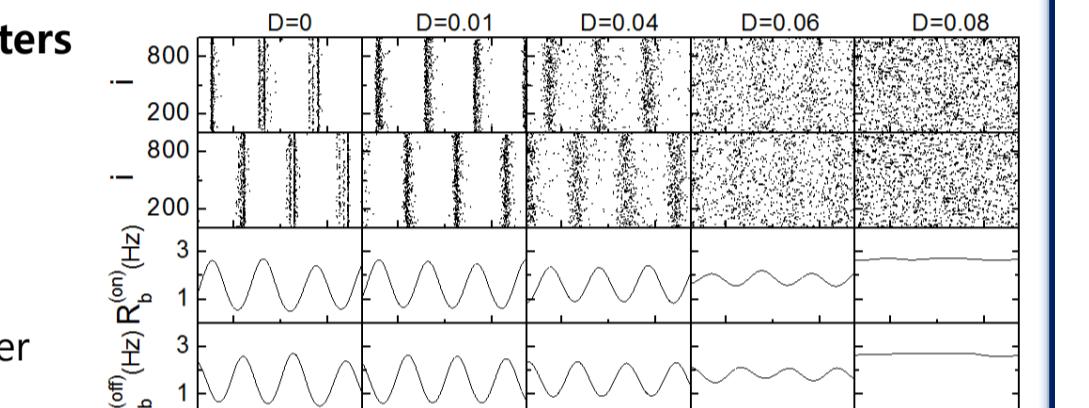


Thermodynamic Bursting Order Parameter

Mean square deviation of R_b : $O_b \equiv (R_b(t) - \bar{R}_b(t))^2$

Unsynchronized Bursting State: $N \rightarrow \infty$, then $O_b \rightarrow 0$

Synchronized Bursting State: $N \rightarrow \infty$, then $O_b \rightarrow$ Non-zero value

Bursting Transition occurs for $D_b^* \sim 0.068$

Thermodynamic Bursting Order Parameters Based on $R_b^{(on)}$ and $R_b^{(off)}$

Another Raster plots of bursting onset and offset times and smooth IPBR kernel estimates $R_b^{(on)}$ and $R_b^{(off)}$

As D is increased, bursting stripes in the raster plots becomes smeared and overlap.

→ Amplitude of both $R_b^{(on)}$ and $R_b^{(off)}$ decreases.

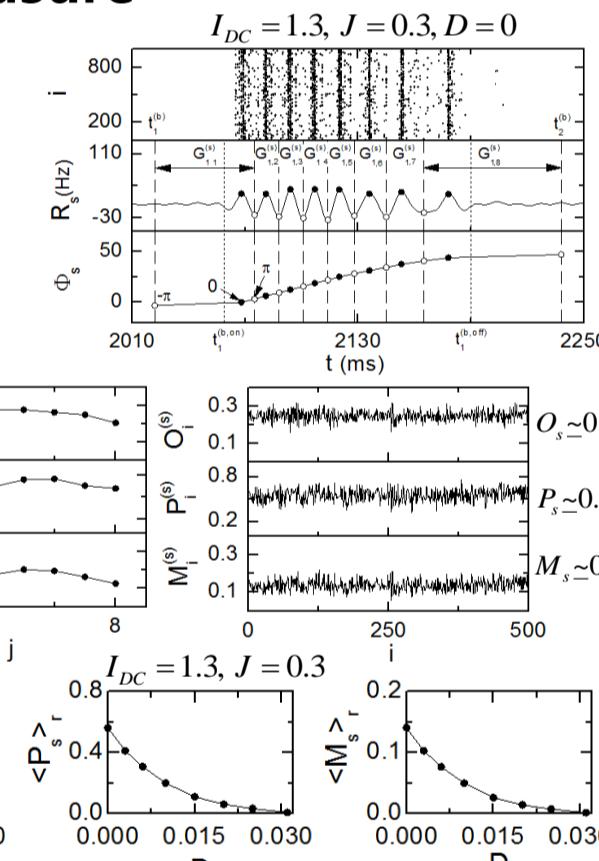
Measurement of Degree of Intraburst Spike Synchronization via Statistical-Mechanical Intraburst Spiking Measure

Bursting measure of i th global spiking cycle $M_{i,j}^{(s)}$

in the i th bursting cycle

Occupation degree of spiking times: $O_{i,j}^{(s)} = N_{i,j}^{(s)} / N$

$N_{i,j}^{(s)}$: No. of spiking HR neurons in the j th spiking cycle in the i th bursting cycle


Pacing degree of spiking times: $P_{i,j}^{(s)} = \frac{1}{N_{i,j}} \sum_{k=1}^{n_{i,j}^{(s)}} \cos \Phi_k$

Contribution of spiking times to the macroscopic IPSR R_s

$S_{i,j}$: Total No. of microscopic spiking times

Statistical-Mechanical Spiking Measure $M_s^{(s)}$

With increasing D , $\langle O_s \rangle_r$ decreases very slowly, while $\langle P_s \rangle_r$ and $\langle M_s \rangle_r$ decrease very rapidly.

Summary

Characterization of Burst and Spike Synchronizations via Separation of the Slow (Bursting) and Fast (Spiking) Time Scales by Frequency Filtering

Thermodynamic Bursting and Intraburst Spiking Order Parameters

• Thermodynamic Bursting Order Parameter → Determination of Threshold for the Bursting Transition
• Thermodynamic Intraburst Spiking Order Parameter → Determination of Threshold for the Intraburst Spiking Transition

Statistical-Mechanical Bursting and Intraburst Spiking Measures

Measurement of Degree of Bursting and Intraburst Spiking Synchronizations

References

- W. Lim and S.-Y. Kim, "Statistical-mechanical measure of stochastic spiking coherence in a population of inhibitory subthreshold neuron," *J. Comput. Neurosci.* **31**, 667-677 (2011).
- S.-Y. Kim and W. Lim, "Realistic thermodynamic and statistical-mechanical measures for neural synchronization," *J. Neurosci. Methods* **226**, 161-170 (2014).
- S.-Y. Kim and W. Lim, "Thermodynamic order parameters and statistical-mechanical measures for characterization of the burst and spike synchronizations of bursting neurons," e-print: arXiv:1403.3994 [q-bio.NC].
- S.-Y. Kim and W. Lim, "Frequency-domain order parameters for the burst and spike synchronization transitions of bursting neurons," e-print: arXiv:1403.4814 [q-bio.NC].